INPRISEg®
Borland [PRODUCTS | SEARGH | DOWNLOADS | MEMBERSHIP | NEWSGROUPS | FEEDBAG
C++Builder WebBroker

This paper is designed to get you up to speed using the basic features of the C++Builder 4.0 WebBroker. The
WebBroker consists of various Wizards and components that make it easy for you to create CGlI, |SAPI and
NSAPI web servers. Servers of thistype provide asimple, very reliable way to create distributed applications
that can be viewed in aweb browser.

Because C++Builder is a Windows compiler, the executables or DLLs you learn how to create in this paper wil
work only on NT or Windows 95/98 web servers. The code I'm showing you is not portable to UNIX. You can,
of course, use a browser to view the HTML from your servers on any type of machine you want, including
Apple, Linux or Unix clients. Only the server itself must be Windows based.

The technology shown in the paper is not particularly difficult., Nonetheless | assume the audience for this
article has a basic knowledge of C++Builder and Web server technology.

The Web Broker ships with C++Builder 4.0 Enterprise edition.

Aslong as your server is Windows based, the actual brand name of the server you use should not be important.
| use the Microsoft Internet Information Server that ships with Windows NT, but you can also use the Personal
Web Server (PWS) that ships on the Windows 98 CD. PWS can a so be downloaded from the Microsoft Web
site. These servers support both CGI and ISAPI. The Netscape server supports both NSAPI and CGlI. Inthe
future it will also support ISAPI. Other Windows based Web servers should at least minimally support CGl,
though afew also support ISAPI/NSAPI. A very smple server that can aid in debugging ISAPI applicationsis
available at http://www.drbob42.com/.

| ndex

A Simple Database Example

Changing Your CGI Applicationto an ISAPI DLL
Looking Ahead

L earning the Basics

Accessing Your Servers

Using the TPageProducer Component
TPageProducer

Responding to a Button Click

Taking Stock

Understanding Tags

Working with Queries

More on Databases
TQueryTableProducer: A Oneto Many

Summary

Source for Examples

A Simple Database Example

Perhaps the best way to get started isto create a CGl application that will broadcast a table across the web.
Once you have seen how easy it isto create a database application on the web, | will then go back to the basics
and give you atour of the important tools you can use when building web applications.

To get started, launch C++Builder and choose File | Close All. Select File | New | Web Server Application fron

the menu. You will be presented with the New Web Server Application dialog, as shown in Figure 1. From the
options available, choose CGI stand alone executable.

1of 22

Hew Web Server Apph;atiun

Figure 1: The New Web Server Application dialog let's you specify whether you want to create a CGl
application or an | SAPI/NSAPI application.

An ISAPI or NSAPI applicationisa DLL that will reside in the address space of your web server. ISAPI isa
Microsoft standard; NSAPI is a Netscape standard. Delphi will automatically create asingle binary file
compatible with either standard.

A CGI application is a stand alone executable that will reside in its own address space. Win-CGl applications
were developed to support tools such as Visual Basic. C++Builder developers will rarely have reason to create
tools based on the Win-CGl standard.

In this paragraph | say afew words about the relative merits of ISAPI/NSAPI vs CGI. Thisisacontroversia
topic, which typically givesrise to very strong opinions. ISAPI and NSAPI DLLs need only be loaded once,
and will then stay in the address space of your server. This means that access to them, after the first time they
are loaded, is reasonably fast. Executables need to be loaded each time they run. This can result in significant
overhead that you do not get from DLLs. On the other hand, DLLs can be difficult to debug, as they tend to sta
in memory, making it difficult to replace a previous version of your DLL with anew one. Thislatter problem i<
why | suggest you start out by building CGI applications. One further advantage of CGI applicationsis that you
can start them at the command prompt and pipe their output to atext file. This can provide a handy means of
debugging ssimple CGI applications of the kind created by newcomers to the technology. If you want to step
through the code of your server, then sometimesit is easier to use an ISAPI dll. Tips on debugging both CGI
and |SAPI applications are available in the CBuilder online help.

Note

You will find it very easy to move from a CGI application to an | SAPI/NSAPI application. As a result,
thereislittle or no penalty for using CGI during your debugging phase and ISAPI DLLs once you have ¢
product you want to release.

After clicking the OK button on the New Web Server Application dialog CBuilder will automatically create a
web module, its source, and a project source file. A web module is a TDataM odule with afew new properties
and methods added to it. These new methods and properties allow you to create database applications that can
be shown in aweb browser.

Note

You can help port old applications to the web by creating your own TWebModule that consists of a
TDataModule with the TWebDispatcher component from the Internet page. A TDataModule with a
TWebDispatcher component on it is roughly equivalent to a TWebModule.

Drop down a TTable object on the Web module, just as you would on a TDataModule. Set the DatabaseName

property of the TTable object to BCDEMOS, and the TableName to the Country table. (The choice of database
and table that you useis entirely arbitrary. | am ssimply selecting a table and Alias that should be widely

20of 22

available to all users of C++Builder.)

Drop down a TDataSetTableProducer from the Internet page in the Component Palette and set its DataSet field
to Tablel. Double click on the TDataSetTableProducer to bring up the Response Editor dialog. You can also
reach this dialog by right clicking on the TDataSetTableProducer component. Use the dialog to set the table's
Border property to 1, as shown in Figure 2.

I".,_:r: Editing D ata5SetT ableProducer] ->Columns

||

NhaDefautt =] | Mame TStingField
= Capital TStringField

Caontinent TStringField
S Area TFlaatField
| Populatian TFloatField

[Name | Capital |Continent| Area |Population |

e Buenos South e

Figure 2: Using the Response Editor to set the border used when displaying your table on the web.

Right click on the TWebModule itself to bring up the Action Editor. Right click on the Action Editor and
choose Add from the popup menu to create a WebAction Item, as shown in Figure 3. Set the Default property
of the action you created to True.

£# Editing WebModule1->Actions

Webdctionlten

Figure 3: Working with a web action.
Click on the events page for you action, and create an OnAction event. Fill it in asfollows:

void _ fastcall TWwebMdul el:: WebModul elWebAct i onl t enLAct i on(
TCbj ect *Sender, TWebRequest *Request, TWebResponse *Response,
bool &Handl ed)

{
Response- >Cont ent = Dat aSet Tabl ePr oducer 1- >Cont ent () ;

}

At this point you can save your work. When | saved my example program | called the project file
SimpleData.bpr and the Web module Main.cpp. In other words, | saved Unitl as Main.cpp and Project1.bpr as
SimpleData.bpr.

30f 22

Many developers might find it helpful to choose Project | Options and turn to the Directories/Conditional page
and fill in the Final Output field so that your application will end up somewhere that it can easily be reached by
your web server. For instance, in Figure 4, | have set my program up so the executable will be sent to the
c:\Inetpub\Scripts directory.

Project Options Ed

. ——I— b

palh [puticles\BCB W eb\SmpleD ata $1BCE el [1

aricles\BCBAWeEAS mpleD ata beboade3tut o])

soucepalh [$ECE)soweetvel o]]
eouput [4]

Figure4: Configuring Delphi to storethe server in the Scriptsdirectory.

Make your project so that it compiles and links. It is probably wise to also go to the out put directory for your
project and make sure that the executable is there. If you want, you can run it once from the command prompt.
It should spit out a screenful or so of messy looking HTML. If you want, you can redirect thisHTML into atex
file, so that you can study the output from your program. To do this, enter the following command at the DOS
prompt: SimpleData.exe > Temp.txt.

Of course, you don't really want to see a messy text file full of HTML. Instead, you want to see the output of
your program on the World Wide Web.

One simple way to get quick gratification isto start your web browser, and to enter the following URL, where
you write not the name of my machine, which is EastFarthing, but the name of your own machine. In this
example | assume you have put your executable in the scripts directory:

http://eastfarthing/Scripts/SimpleData.exe
When you are done, you should see something like the output shown in Figure 5. The output | show hereis
squashed down into the smallest possible space, so that the bitmap | am using in this article will download

quickly to your site. Needless to say, the results are more aesthetically pleasing if you expand your browser to
1024 X 768.

4 of 22

a http: /feastfarthing/Scriptz/SimpleD ata.exe - Microsoft

i

Name Capital Cuntinent| Area |Pupu]atiun

. |Buenos =outh
Argentina e sy 2TTIE15 (32200003

Bolivia [LaPaz [°°" 1098575 7300000
Atnerica

Figure5: Theoutput from the SimpleData program.

Changing Your CGI Application toan ISAPI DLL

In this section you will learn how to convert your CGI application to an ISAPI/NSAPI DLL.

All the code that makes your program into either an ISAPI DLL or CGI application is located in the project
source. If you want, you can create a single project source file, and use IFDEFs to decide whether the
application will be an ISAPI DLL or CGI application. In this case, however, | will smple create two project
source files, and link them both to the same Web Module.

Select File | Close All to close your current project. From the menu, choose File | New | Web Server
Application. Thistime, elect to build an ISAPI/NSAPI project. Once you have completed the wizard, choose
Project | Remove from the Project menu and remove Unitl from the project. Save your work into the same
directory where you created the CGI application from the previous section of this paper. In this case, | would
suggest saving the BPR file under the name SimpleDatal SAPI .bpr.

Now choose Project | Add to Project from the BCB menu. Select the main file from the SimpleData project.

Y ou now have a new project source file which is attached to the Web module you created in the previous
section of this paper.

If you want, choose, Project | Options and set the Final Output directory for this project to c:\Inetpub\Scripts, or
some other location you find appropriate. When you are done, build your project and make surethe DLL is
indeed in the directory you suppose it to be.

Now launch your browser, and enter the following URL, adjusting any of the details to the naming and
directory conventions active on your system:

http://eastfarthing/Scripts/Sinpl eDat al SAPI . dl |

When you are done, the SimpleDatal SAPI.dIl should output the same information shown in Figure 5.
Asyou can see, C++Builder makes it easy for you to build either ISAPI/NSAPI or CGl Web server
applications. In this case, | first built a CGI application, and then converted it into an ISAPI/NSAPI DLL. You

can, of course, go directly to an ISAPI implementation, or you can stick with a CGI implementation. The choic
isyours.

L ooking Ahead

At this stage, you know how to create a simple CGI application that can display the contents of atable over the

50f 22

web. If you have an NT server connected to the Web, then you can view this content from your current
computer, from a computer down the hall, or from a computer on the other side of the world. The output from
your program is sent to your clients using HTTP, so anyone who can get at your server can view this data,
regardless of the type of machine or the type of operating system they are using.

While creating this application, you learned about TWebM odules, TDataSetTableProducers, response editors,
action editors, web action items, aswell as ISAPI/NSAPI and CGI technologies. Now that you understand the
basics of the WebBroker, the next step isto dig into this technology a bit deeper. Ironically, thiswill involve
taking several steps back and seeing some of the fundamental principles of the WebBroker technology.

L earning the Basics

The next program | want to build will simply output atext string into your browser. Thisisthe simplest
possible form of CGI application, at least in terms of its functionality.

Choose File | Close All to close any open files, then select File | New | Web Server Application. Choose to
build either an ISAPI/NSAPI or CGI application, depending on your wishes, though | suggest using CGlI for the
first builds of your server.

In this project, you can leave your TWebModule blank. Instead, right click on it and select the Action Editor.
Create asingle action called WebA ctionl, and use the Object Inspector to help you create the following
OnAction event handler:

void _ fastcall TwebMddul el:: WebMbdul elWebAct i onlt emlAct i on(
TObj ect *Sender, TWebRequest *Request, TWbResponse *Response,
bool &Handl ed)

{

Response- >Cont ent = "<P>Thi s i nf or mati on</ B>. </ P>";

}

Save your project as RawOutput.bpr, and save the Web module as Main.cpp. Compile your work. When you
test your program, you should see a ssimple string in your browser, as shown in Figure 6.

<} http://eastarthi__

l ,_E;re -E» l {;'4‘*’%‘ &
| agdress[&1 ritp-7= 3] o*Bo
'S =
This information.
Reac %
| |25 Local intranst 7

Figure 6: Thesimple string you see when accessing the RawOutput server.
Now that you see how the system works, it should be obvious to you that you can use this technology to output
awide variety of information across the World Wide Web. The example shown here outputs a very simple text

string, but obviously you could create or compose much more complex strings, while embedding as much or as
little HTML into the string as you desire.

Easy Accessto Your Servers

By this time you have created three servers, and you probably want a means for accessing them as simply and
easily as possible. To do this, you can create the following HTML file:

6 of 22

<HTM_>
<HEAD><T| TLE>MyScr i pt s</ TlI TLE></ HEAD>
<BODY>

<TABLE BORDER = 1>

<TR>

<TD>

Si npl e Data CE Ver si on</ A>
</ TD>

<TD>

Si npl e Data | SAPI Ver si on</ A>
</ TD>

<TD>

RawQut put Sanpl e</ A>

</ TD>

</ TR>

</ TABLE>

</ BODY>
</ HTM_>

If you link to this file from your home page, then you can have arelatively easy means of loading your servers.
Needless to say, the paths I've hard coded into this file may well differ on your system.

Using the TPageProducer Component

The previous example gives you a sense of the flexibility of the WebBroker technology. However, the
WebBroker contains a number of tools that make it easy for you to create more complex web servers than the
one's I've shown you so far. In this section, you will learn about the TPageProducer component, which can
greatly ease your burden when creating more complex examples of the type of non-database server shown in
the RawOutput server example.

Choose File | New | Web Server Application and build either an ISAPI./NSAPI or a CGI project, depending on
your tastes, predilections, etc. Turn to the Internet page in the Component Palette, and drop down a
TPageProducer component on your Web module.

A TPageProducer component has two key properties called HTMLDoc and HTMLFile. HTMLDoc can contair
while HTMLFile can reference, an HTML file that you want to display over the web. For instance, if you click
on the HTMLDoc property editor, you could enter the following smple bit of HTML.:

<HTM_>

<HEAD><TI TLE>Sanpl e Page</ Tl TLE></ HEAD>

<BODY>

<P>Here is sonme text that | am displaying on the web. </ P>
</ BCDY>

</ HTM.>

Y ou could aso place thistext in afile, and point the HTMLFile property at the text.

Right click on the Web module to bring up the Action Editor. Create a default action and associate the
following code with it:

void _ fastcall TWwebModul el:: WebMbdul elWebAct i onl t emLAct i on(
TOhj ect *Sender, TWebRequest *Request, TWbResponse *Response,
bool &Handl ed)

{
}

Response- >Cont ent = PagePr oducer 1- >Cont ent () ;

Now compile and test your server. When you view the server in your browser, the string from your HTML file

7 of 22

should be displayed for the user's perusal.

When used in this manner, the TPageProducer component does not provide much more functionality than what
you saw in the RawOutput example. To see the specific advantages of the TPageProducer component, you nee
to learn about tags.

TPageProducer

It'sfinally time to start building a somewhat more complex example. Create a new example called WebOracle,
and add a PageProducer to it, as you did in the previous example. Thistime, the HTML you add to the project
should look like this:

<HTM_>
<HEAD><T| TLE>Know edge Repository</ Tl TLE></ HEAD>
<BODY>

<H1>Knowl edge Repository</Hl>

<P>Wel come to the Know ege Repository. Qur servers contain all the
known knowl edge in the world, plus a large fund of additional "unknown"
i nformati on about both the past and the future. Qur database is free to
the general public.</P>

<P> I f you have a question you would like to ask, type it into the
control shown bel ow, and then push the button.</P>

<FORM ACTI ON="/ Scri pt s/ WebOr acl e. exe", METHOD=POST>
<I NPUT TYPE=EDI T NAME=User Query>
<I NPUT TYPE=SUBM T>

</ BODY>
</ HTM.>

Readers who know HTML should be able to picture the output generated by this code, but if you need help
visualizing it, you can peek ahead to Figure 7, ignoring the last bit of content at the bottom of the screen shot.

The response method for your object should look like this:

void _ fastcall TwebMdul el:: WebMbdul elWebAct i onlt emlAct i on(
TObj ect *Sender, TWebRequest *Request, TWbResponse *Response,
bool &Handl ed)

{
Response- >Cont ent = PagePr oducer 1- >Cont ent () ;
i f (Request->Met hod == "POST")
Response- >Cont ent = Response->Content + "
" + Request->Content;
}

When you run this program, you presented with some text, and then at the bottom of the file there is an Edit
control and a button. If you type something in the edit control and press the button, then you will see the text,
edit control and button again, plus the text that you entered. Thisis shown in Figure 7.

8of 22

; nuwledge Repository - Hic:msuf Internet Explo._.. B3

l&dﬁeﬁﬁ @ hitp:/ /eastfarthing/S cripte/webOracle. exe. | ‘f}ﬁg

Knowledge Repository

Welcome to the Enowlege Eepository. Our servers

contain all the known knowledge in the world, plus a
large find of additional "unknown" mformation about
koth the past and the fiature.

Dur databasze are free to the general public. If you
have a question you would like to ask, then type it
te the contrel shown below, and then push the
buttorn.

| _ Submit Query |
UserQuery=ly+Cuery

|

[&] Done [[E5 Local intranet

Figure7: Thetext at the bottom of the picture was entered by the user, and then echoed back to him by

theWebOracle server.

If the user presses the button on the HTML form, the WebM odulelWebA ctionltem1Action method is called. Ir
that case, the Request object passed to the method will contain the content of the information passed in to the

application when you pressed the button.

Though it is still in avery nascent form, the WebOracle program already has some interesting features. In
particular, it lets aclient carry on adialog, abeit avery simple one, with the server. Because of the nature of th
web, this means you can communicate between computers located in two locations. In particular, one computer
in England could be talking to a second computer in San Francisco, or one computer in Australia could be
talking to a second computer in New Y ork. The power of thistechnology is quite significant.

Responding to a Button Click

The next thing we can do with this program is have it respond in some kind of useful fashion to the button pres
onthe HTML form. In thiscase, | just want to display the text the user has sent in a custom made HTML file.
Thismeans| havetwo HTML files| want to work with. The first file you have already seen, and it is attached
to PageProducerl. The second file | can attach to a second TPageProducer that | have called FormProducer:

<HTM_>
<BODY>

<P>You asked: <#User Query></P>

<P>Thi s question is posed in an incorrect format.

Abor t ed! </ B></ P>

</ BODY>
</ HTM_>

9of 22

Query

Our goal isto write code that will properly respond to a user's questions. For instance, if the user asks, "What i<
the secret of the universe?," then we want to respond by generating an HTML page that looks like this:

You asked: "What is the secret of the universe?"
This question is posed in an incorrect format. Query Aborted.

It's easy enough to see how to generate the second of these two sentences, but it is going to take me afew
paragraphs to explain how to generate the first sentence. This explanation will contain descriptions of how to
work with the Pathinfo property and how to work with tags. A tag isthelittle bit of HTML that looks like this:
<#UserQuery>. But I'm going to ask you to push the subject of tags onto your stack for abit, and to focus first
on the Pathinfo property.

To understand the Pathinfo property, you need to recall that the button and edit control on our original HTML
form were declared with this code:

<FORM ACTI ON="/ Scri pt s/ WebOr acl e. exe/ For m nf 0", METHOD=POST>
<I NPUT TYPE=EDI T NAME=User Query>
<|I NPUT TYPE=SUBM T>

Hereisthe way the key linein this example used to look:

<FORM ACTI ON="/ Scri pt s/ WbOr acl e. exe", METHOD=POST>

Hereisthe way this line looks now that we have edited it to include the /Forminfo URI:

<FORM ACTI ON="/ Scri pt s/ WebOr acl e. exe/ For m nf 0", METHOD=POST>

When the user clicks the HTML button, this code will cause the WebOracle program to be called with a URI,
or Pathinfo, of /Forminfo. Y ou can explicitly respond to this URI by setting up a new WebActionltem which |
decided to call Forminfo that has its Pathinfo set to /Forminfo. To get started, right click on the TWebModule,
and create a new WebA ctionltem. When you finish editing it, the Object Inspector for your new Action Item
should look something like the one shown in Figure 8.

Object Inzpector | x|
IM-:u:I'I Lictions[2] TwWebdctionlter = l

Froperties i BIERE |

Default (falze
_ Enabled true

ki ethod T ype mﬂy_

M ame [F il k]
Pathlnfo | Faminfo

Figure 8: ThisWebActionltem hasits Pathlnfo set to /Forminfo.

Now create an OnAction event for this WebA ctionltem. Here is how to fill out the Formlnfo OnAction event
handler:

void _ fastcall TMd1l:: ModlFor m nf oActi on(TCbj ect *Sender,
TWebRequest *Request, TWbResponse *Response, bool &Handl ed)

{
}

Response- >Cont ent = For nPr oducer - >Cont ent () ;

Asyou can see there is nothing unusual about this code. In short, it does nothing to explain how | can generate
a sentence which will mirror back the user's question to him.

10 of 22

To solve this problem, you need to understand that each page producer has a property called OnHTMLTag.
When this method gets called, you can substitute text that you want to use in place of the tag in your HTML. In
particular, | can substitute the user's question for the tag in the HTML that looks like this: <#UserQuery>. Here
isthe OnHTMLTag handler that makes the substitution for us:

void _ fastcall TMd1:: For mProducer HTM.Tag(TObj ect *Sender ,
TTag Tag, const Ansi String TagString, TStrings *TagParans,
Ansi String &Repl aceText)

{
Ansi String S;

S = Request - >Cont ent Fi el ds- >Val ues[Request - >Cont ent Fi el ds- >Nanes[0]] ;
Repl aceText = "" + S + "";

}

In this code, | set the ReplaceText property to the value of anew string. This value will automatically be pasted
into my HTML in place of the Tag.

The Request object, which plays akey role in the FormPropucerHTML Tag method, is global to the
TWebModule. It has a property called Content, which contains the request being passed to us. Given the
example currently being described, the Content field will look something like this:
"UserQuery=What+ist+thet+secret+of +the+universe%3F." Clearly thisis close to what we want, but we would
have to parse it some before displaying it to the user.

Note

The Content field looks as it does because PageProducer 1 contains a line of HTML that setsthe EDIT
NAME to UserQuery. If the user types "What is the secret of universe?" into the HTML edit control, ther
heis, in effect, setting User Query equal to the string "What is the secret of the Universe?" In other
words, the edit control named "UserQuery" is now equal to the string.

Fortunately for the beleagured programmers of the world, the Request property has a property called
ContentFields. The ContentFields property contains the parsed version of your text. In short, it converts the
string "What+istthetsecret+of+thetuniverse%3F" into the string "What is the secret of the universe?' Y ou car
access the value the user typed in by writing the following code:

S = Request - >Cont ent Fi el ds->Val ues[" User Query"];

After making this call, Swill contain the string the user typed into the HTML edit control. In the case we are
currently describing, that string looks like this: "What is the secret of the universe?' Hallelujah!

The code | show here can be improved slightly by taking advantage of a property of the ContentFields object
called the Names array. Thisisastring array with the name of each parameter passed to your application
embedded init. In this case, Names[0] will contain the string "UserQuery". This allows us to write the
following, very reusable, line:

S = Request - >Cont ent Fi el ds->Val ues[Request - >Cont ent Fi el ds- >Nanes[0]] ;

This code is better than the previous example, because it does not have the word "UserQuery" hard coded into
it.

Asyou recall, PageProducerl had aline of HTML in it that looks like this:

<I NPUT TYPE=EDI T NAME=User Query>

Y ou might change it to look like this:

11 of 22

<I NPUT TYPE=EDI T NAME=User Questi on>

Making this change would break code that looks like this:
S = Request ->Cont ent Fi el ds->Val ues[" User Query"];

The change would not break the following code, because the Names field would track the changes to your
HTML:

S = Request - >Cont ent Fi el ds- >Val ues[Request - >Cont ent Fi el ds- >Nanes[0]];

In other words, Nameg[0] would now contain the string UserQuestion rather than UserQuery.

Note

When contemplating these issues, take care not to confuse the Pathinfo, which is set to /Forminfo, with
the content string "UserQuery." Furthermore, note that | (perhaps somewhat confusingly), set the tag
name to <#UserQuery>. So far, the code | have written would work just as well if the tag looked like
this: <#UserFoo>. In other words, | haven't yet made any reference to the string in the tag itself. | will
show you how to do that just a little later in this paper.

Taking Stock

At this stage you are beginning to understand a good deal about the powerful WebBroker technology. However
| readily concede that you need to assimulate quite a bit of information before you are ready to take advantage
of thistool. To help increase your understanding, | want to now take a side trip into two subjects:

e Thefirst will be amore detailed look at tags.
e The second will be an examination of HTML queries.

To aid in the exploration of these subjects, | have modified the HTML associated with PageProducerl so that it
looks like this:

<HTM_>

<HEAD><TI TLE>Know edge Reposit ory</ Tl TLE></ HEAD>

<BODY>

<H1>Know edge Repository</Hl>

<P>Wel cone to the Know ege Repository. Qur servers contain all the known
know edge in the world, plus a |arge fund of additional "unknown"

i nformati on about both the past and the future.</P>

<P>Qur database are free to the general public. If you have a question
you would like to ask, then type it into the control shown bel ow, and

t hen push the button. </ P>

<FORM ACTI ON="/ Scri pt s/ WebOr acl e. exe/ For m nf 0", METHOD=POST>

<I NPUT TYPE=EDI T NAME=User Query>

<|I NPUT TYPE=SUBM T>

<HR>

<P>Here are sone |links that test various features of this Wb Server</P>

Tag Test </ A>

Query Test </ A>

</ BODY>
</ HTM_>

This code differs from the original version in that it has two hyperlinks at the very bottom that will call your

12 of 22

form with a URI of Taglnfo and UserInfo. As|'m sure you can imagine, my next step isto set up WebAction
events for each of these URIs. The first example will demonstrate how to handle tags, and the second will show
how to handle a query.

Understanding Tags
In this section, you will get an in depth look at working with Tags.

To show you how to work with tags, | have added a TPageProducer which | called TagProducer to the Web
module of the WebOracle program. | have set its HTMLDoc property to the following bit of HTML.:

<HTM_>
<HEAD><TI TLE>Vi sual Slick Edit</TI TLE></ HEAD>
<BODY>

<P>This is a |link: <#LINK NAVE=M/Li nk></ P>

<P>This is an inmage: <#l MAGE NAME=M/I mage></ P>

<P>This is custom <#MyCust om NAME=Sunny, TYPE=Fool i shLove,
WAY=Cr ooked></ P>

</ BODY>
</ HTM_>

Note that thissimple HTML file hasthreetagsin it. ThefirstisaLINK tag, the second an IMAGE tag and the
third a CUSTOM tag. It happens that Delphi alows you to pass zero or more parameters to each tag, and you
can name each parameter as you choose. In most cases, you will passin zero parameters. But in this case | have
passed in one parameter to the first two tags, and three parameters (NAME, TY PE and WAY) to the third tag.

To work with the TagProducer and its HTML, you need to set up a WebAction that hasits Pathinfo set to
/Taginfo. Its OnAction event should look like this:

void _ fastcall TMd1l:: ModliTagl nf oActi on(TObj ect *Sender,
TWebRequest *Request, TWbResponse *Response, bool &Handl ed)

Ansi String S = "This exanpl e shows how to respond to tags.
"For nore information, view the TagProducer on the WbMdule.";

Response->Content = S + "<HR>" + TagPr oducer->Content () ;
}

This code will mirror back the HTML in TagProducer. However, you know that you must respond to the
OnHTMLTag event if you want to properly handle the tags embedded in the HTML. When you first create the
event by clicking on the OnHTML Tag property of TagProducer, the code generated will look like this:

void _ fastcall TMd1l:: TagProducer HTM.Tag(TObj ect *Sender, TTag Tag,
const Ansi String TagString, TStrings *TagParans,
Ansi String &Repl aceText)

| want to spend some time looking at the parameters passed to the ONHTML Tag event. Thefirst is of type
TTag, and it designates the kind of tag that you are currently being asked to replace. Here are the possible
kinds:

enum TTag { tgCustom tgLink, tglmge, tgTabl e,
t gl mageMap, tgObject, tgEnmbed };

13 of 22

In my experience, most of the tags you create will be of type tgCustom. For instance, the <#UserQuery> tag
from the previous example is a custom tag. If you want to create a different kind of tag, you can use this format
<#Link Name=MyTag> Thistag is of type Link and has a parameter called Name set to the value MyTag. Here
isasimple Image tag with no parameters. <#lMAGE>.

Hereis an example of how to work with tags:

Ansi String _ fastcall GetParan nfo(TStrings *TagParans)

Ansi String S;

for (int i = 0; i < TagParans->Count; i ++)
{
S =S + "Param " + TagParams->Strings[i] + "
";
S =S + "Nanme: " + TagParans->Nanes[i] + "
";
S =S + "Value: " + TagParans->Val ues[TagPar ans- >Nanes[i]] +
"
";
return S;

}

void _fastcall TWebModul el:: TagProducer HTM.Tag(TObj ect * Sender,
TTag Tag, const Ansi String TagString, TStrings *TagParans,
Ansi String &Repl aceText)

swi tch (Tag)
{
case tgLink:

Repl aceText
br eak;

TagString + "
" + Get Par anl nf o(TagPar ans) ;

case tgl mge:
Repl aceText = TagString + "
" + Cet Par anl nf o(TagPar ans) ;
br eak;

case tgCustom

Repl aceText = TagString + "
" + Cet Par anl nf o(TagPar ans) ;
defaul t:

Repl aceText = "Unknown Tag";

If you are passing in zero parameters to atag, then you can always get the tag name by checking the value of th
TagString. For instance, if you created this tag: <#MyTag>, then the TagString parameter to the OnHTMLTag
event will be set to MyTag.

If you are passing in parameters to a tag, then you can check the TagParams property to get the values of the
parameters that you passed in. The TagParams->Strings[n] property gives you the entire parameter. For
instance, if you create thistag: <#LINK NAME=MyLink>, then TagParams->Stringg 0] is equal to
NAME=MyLink. To parse this parameter, use the TagParams->Names[n] and TagParams->V aluegn]
properties.

The following code will display al the parameters passed in the TagParams parameter:

Ansi String S;

for (int i = 0; i < TagParans->Count; i ++)
{
S =S + "Param " + TagParams->Strings[i] + "
";
S =S + "Nanme: " + TagParans->Nanes[i] + "
";
S =S + "Value: " + TagParanms->Val ues[TagPar ans- >Nanes[i]] + "
";

}

For the following tag: <#LINK NAME=MyLink>, the output from this code would look something like this:

14 of 22

Param NAME=MyLi nk
Nanme: NAVE
Val ue: MyLi nk

Rather than trying to explain how this output is produced, | will ask you to compare the code and the output. A
quick perusal of these two elements should tell you everything you need to know.

Y ou can test which kind of link is being passed in to an OnHTML Tag event, but using the TTag enumeration:

switch (Tag)
{

case tgLink:
Repl aceText = TagString + "
" + Cet Par anl nf o(TagPar ans) ;
br eak;

case tgl mage:
Repl aceText = TagString + "
" + Cet Paranl nf o(TagPar ans) ;
br eak;

case tgCustom
Repl aceText
def aul t:
Repl aceText

TagString + "
" + Get Par anl nf o(TagPar ams) ;

"Unknown Tag";

Given the following HTML.:

<P>This is a |link: <#LINK NAVE=MyLi nk></ P>

<P>This is an inmage: <#l MAGE NAME=M/I mage></ P>

<P>This is custom <#MyCust om NAME=Sunny, TYPE=Fool i shLove,
WAY=Cr ooked></ P>

The LINK tag would be caught by the tgLink part of the switch statement, the IMAGE tag by tglmage, and the
last option by tgCustom. Obvioudly it would make sense to use <A HREF> code with tgLink and <IMG

MY FILE.JPG> with tgimage, etc. The purpose the TTag property is clear, but there is nothing that forces you
to use a particular tag with a particule HTML tag. Associating HTML image tags with the tglmage identifier is
just a convention.

In my code, | show you how the tag technology works, but in your code you might want to pay closer attention

to the implied conventions. Assuming you followed the conventions, in big HTML files, you might have many
tglmage or tgLink tags. To distinguish one for the other, you might want to call your first paramter NAME, anc
assign a unique name to each tgLink tag that you create. For instance, if you had many images with pictures of

peopleinit, you could write code like this:

<#| MAGE Nanme="Suzy" >
<#| MAGE Nanme="Fred">
<#| MAGE Nanme="Lisa">

Now that you understand how tags work, | can show you the output from the Taglnfo URI code used in the
WebOracle program:

15 of 22

This is a link: LINK
Param NAME=MyLi nk
Name: NAME

Val ue: MyLi nk

This is an inmage: | MAGE
Param NAVE=MyI nage
Name: NAME

Val ue: Myl nage

This is custom M/Custom
Param NAME=Sunny,

Nane: NANME

Val ue: Sunny,

Param TYPE=Fool i shLove,
Nane: TYPE

Val ue: Fool i shLove,
Param WAY=Cr ooked

Nane: WAY

Val ue: Crooked

Compare this output with the original HTML file in TagProducer. If you study the output, the original HTML,
and the code in the ONHTML Tag event, then you should be able to garner enough information to thoroughly
understand WebBroker Tags.

Working with Queries
Consider the following HTML.:

Query Test </ A>

ThisHTML link has a Pathinfo of /UserInfo. If you create a WebA ctionltem with its Pathinfo set to /UserInfo,
then it will be called when the user clicks on thislink.

Asyou can see, inthisHTML the URI has a question mark followed by the following code:
Sammy=3& Frank=5. These are queries appended to the Pathinfo.

What | am generating here is something called a Fat URL, which is usualy whimsically pronounced "Fat Earl."
A Fat URL can contain all kinds of information. It can be used to maintain state between calls from aclient, or
it can be used to contain information the user filled out in aform.

Hereis how to parse the queries appended onto the Pathinfo:

void _ fastcall TMd1:: ModlUser | nf oActi on(TCbj ect *Sender,
TWebRequest *Request, TWbResponse *Response, bool &Handl ed)

Ansi String S;

S = "Method: " + Request->Met hod;

S =S + "<BRPQuery: " + Request->Query;

for (int i = 0; i < Request->QueryFi el ds->Count; i++)

{
S =S+ "<BReField: " + Request->QueryFi el ds->Nanes[i];
S =S+ "
Val ue: " +

Request - >Quer yFi el ds- >Val ues[Request - >Quer yFi el ds- >Nanes[i]];
}

Response- >Content = S;

}

Asyou recall, the Request object has ContentFields property which you used to return the question the user
typed into an HTML edit control. The Request object also has a QueryFields property, and it can be used to

16 of 22

parse the information in a Query.

If you want to see the query the user passed in, then use the Request->Query property. In this case, the Query
field would contain the following string: " Sammy=3& Frank=5."

Thisisfineasfar asit goes, but you obviously want to parse thisinformation so that it is more readily
comprehensible. To parse this query, use the QueryFields property:

S = Request->QueryFi el ds->Val ues[Request - >Quer yFi el ds->Nanes[i]];

This code will retrieve the value of each query. For instance, QueryFields->Valueg" Sammy"] will return 3, anc
QueryFields->Vaueq "Frank"] will return 5. Needless to say, QueryFields->Names[0] will return the string
Sammy, and QueryFields->Nameg[1] will return "Frank". Please note that QueryFields->Vaueq 0] is code that
doesn't get you anything of value! (I say thisto you here, but nevertheless, if you are as human as | am, then you
will still end up trying to write that code and wondering why it doesn't work. It's an easy mistake to make. Drill
itinto your head: don't write QueryFields->Vaueg 0], instead, write QueryFields->Vaueq"Some Valid
String"].

Thisisthe end of the section on tags and queries. Indeed, thisis the end of the section on PageProducers. In the

next section, | will start bring the article around full circle to where we began by returning to the subject of
databases.

Moreon Working with DataBases

In this section I'll show you how to display and search for asingle record from a TQuery object, as shownin
Figure 9.

J File Edit WView Faorites Tools Help |ﬁ
[« -QNAEI B 5
Jﬂ_ EE @ hitp:/ccalvertpe 7S cripte/D ataSetProduce. exe ;I @:}GD

Country: Colombia
Continent: South America
Captial: Bagota

Area: 1138507
Population: 22000000

Enter the name of a country in Morth or South American or Mexico

ICDIDmbiaI Mavigate

I@ Done |_ l_!gg Local intranet

~o |

Figure 9: Displaying and sear ching for a singlerecord from a dataset.

To get started, drop down a TDataSetPageProducer on a TWebModule. Don't confuse the
TDataSetPageProducer with the TPageProducer, TQueryTableProducer or TDataSetTableProducer.

A TDataSetPageProducer is alot like a TPageProducer, except itstags are replaced with fieldsfrom a TTable
or TQuery object. Consider the Country table from the BCDEMOS alias which has afield called Name. If you
write the following HTML, then the TDataSetPageProducer will place the current value of the Namefield in
the <#Name> tag:

17 of 22

Count ry: </ B> <#Name>

Y our goal as aprogrammer isto create tags that have the same name as afield of the table. Then, if you write
the following simple OnAction handler, the tag will be automatically replaced with the current value of the
field:

void _ fastcall TWwebMdul el:: WebMbdul elWebAct i onlt emlActi on(
TOhj ect *Sender, TWebRequest *Request, TWbResponse *Response,
bool &Handl ed)

{
}

Response- >Cont ent = Dat aSet PagePr oducer 1- >Cont ent () ;

Obvioudly thisisavery easy technology to use.

Once you understand the basics of using this technology, you might want to create an example that will alow
the user to type in avalue, and then have the Web server display the record associated with that value. For
instance, you could ask the user to type in the name of a movie, and then show him areview of the movie, or
the name of a person, and then show that person’s address.

Consider the following HTML, which is designed to support a program like the one described in the previous
paragraph:

<HTM_>
<BODY>

Count ry: </ B> <#Nane>

Cont i nent : </ B> <#Cont i nent >

Capti al : </ B> <#Capi t al >

Ar ea: </ B> <#Ar ea>

Popul ati on: </ B> <#Popul at i on>

<HR>

<FORM ACTI ON="/ Scr i pt s/ Dat aSet Pr oduce. exe" METHOD=POST>

<P>Enter the nane of a country in North or South Anmerica.
(Mexico al so supported.)</P>

<| NPUT TYPE=EDI T NAME=EDI T1>

<I NPUT TYPE=SUBM T NAME=NAVI GATOR VALUE="Navi gat e" >

</ BODY>
</ HTM.>

ThisHTML file works with the Country table from the BCDEMOS dlias, and appears to the user like the
screen shot shown in Figure 9. Notice that | create tags for each field of the Country table. At the bottom of the
fileaform allows the user to enter the name of a country. If the user presses the button on the form, then the
code attempts to display data about the country the user entered. The program includes no error handling for
cases when the user typesin an invalid name. Y ou can, however, type in only one or more letters of the name o
acountry, and then see if that value is unique enough to help you view your country.

Here is the default OnAction event for handling the button click:

18 of 22

void _ fastcall TwebModul el:: WebMbdul elWebAct i onlt emlAct i on(
TObj ect *Sender, TWebRequest *Request, TWbResponse *Response,
bool &Handl ed)

i f (Request->ContentFi el ds->Count > 0)

Ansi String S = Request - >Cont ent Fi el ds- >Val ues[" Navi gator"];
if (S == "Navigate")
{

S = Request - >Cont ent Fi el ds- >Val ues["EDI T1"] ;

char SQL[250] ;
sprintf(SQ., "Select * from Country where Nanme like \"9%\"", S.c_str());
Count ryQuery->Cl ose();
Count ryQuer y- >SQL- >Cl ear () ;
Count ryQuer y- >SQL- >Add(Ansi String(SQ));
Count ryQuery->0pen() ;
}

}
Response- >Cont ent = Dat aSet PagePr oducer 1- >Cont ent () ;

}

This code uses the ContentFields property to make sure that we are responding to a click on the correct button.
In this case, the code is overkill, but | think it isinteresting to see that you can write code that distinguishes one
button on aform from another. This could be useful if you are creating forms that have, for instance, Ok,
Cancel, and Abort buttons on them.

Assuming that the user has clicked the Navigate button, the code shown here retrieves the string entered by the
user. It then uses the string to create avalid SQL statement of the form Select * from X where'Y = Z. The code
then closes the table, and opens it again on the new SQL statement. At this point, all that remains to be doneis
return the values of the new SQL statement.

If the SQL statement returned multiple rows, only the first row will be shown. If no rows are selected, then |
simply return aform with captions but no datain it. A more complex program might attempt to handle these
problems with more aplomb.

TQueryTableProducer: A OneTo Many

In this example, you will see how to create a one to many that can be displayed over the web. The name of the
server you create will be called OneToMany.exe or OneToMany.dll, depending on whether you create an ISAP
or CGlI application. Asusual, | suggest you start by working with a CGI application.

When the user first accesses the program, he will see alist of names of companies, as shown in Figure 10. If he
clicks on any of the names, he will see details about transactions undertaken by the company, as shownin
Figure 11. Needless to say, the transactions are kept in a second table that is connected to thefirst tablein a
master/detail relationship.

19 of 22

a Compames - Microzoft Internet Explorer I_r_ I_

CEC=SPT -
[dress @ http: / feastfarthingd sohipte/OneTobany.e (o) pf Go

Company

Click highlight words to wew Company Info.

E aua Dive Shoppe

TThizco

sight Diver

Cayman Divers World Unlimited
Tom Sawyer Diving Centre

Blue Jack Acua Center

WP Divers Club

Figure 10: The default WebActionltem for the OneT oM any program allowsthe user to click on the
name of company to see details about itstransactions.

|DrderNu |CustN 0 |SaleDatE |ShipDate |EmpNu |
[1023 1221 (/188 [7/288 |5
[1076 1221 [12/16/94 [4/26/89 |9

1123 1221 [2/24/93 [2/24/93 (121
1169|1221 [7e4 [Tee4 (12
1176 1221 |[7126094 [7/26194 |52
1269 [1221 [12016/34 (12116194 [28

Figure 11: Usingthe OneToM any server to view thetransactionsfor a particular company.

Infigure 11, you see that company number 1221 had six transactions. Y ou can view the dates of the
transactions in this screen shot. If you blow the screen up to 1024X768, then you can find out addional
information, such as the sums of money involved in each transaction. | don't show you that big screen shot,
however, because | want you to be able to download my bitmaps as quickly as possible.

To get started creating the program, drop down a TTable and TQuery. Name the TTable CustomerTable and th
TQuery OrdersQuery. Set the table to access the Customer table from the BCDEMOS database. Set the
OrdersQuery up to access the Orders table from BCDEMOS by writing the following simple SQL statement:
Select * from Orders where CustNo = :CustNo.

To test your work, first pull up the OrdersQuery and fill in its Params property so that the DataType is ftinteger

20 of 22

and the ParamType is ptinput. Y ou can now set the query to Active, thereby confirming that your SQL isvalid.

To get started working with the CustomerTable, drop down a TPageProducer and name it CustomerProducer.
Add the following code to the HTML Doc property of the page producer:

<HTM_>
] B T i T T >

<TI TLE>Conpani es</ Tl TLE>

</ HEAD>

<BODY>

<H2>Conpany</ H2>

<HR>

Click highlight words to view Conpany | nfo.<P>
<#Conpany Type><P>

</ BCDY>

</ HTML>

Asyou can see, thiscode has atag in it called <#CompanyType>. Y ou are going to need to add a
WebA ctionltem to the Web module that looks like this:

void _ fastcall TwebModul el:: WebMbdul elShowCust oner sAct i on(TObj ect * Sender,
TWebRequest *Request, TWbResponse *Response, bool &Handl ed)

{

Response- >Cont ent = Cust oner Pr oducer - >Cont ent () ;

}

Asyou know by now, the real work of filling in atag is usualy done not in the Actionltem itself, but in the
OnHTMLTag event for the producer you are currently using, which in this case is the CustomerProducer. Here
isthe relevant code:

void _ fastcall TWebModul el:: Cust oner Producer HTM.Tag(TCbj ect * Sender,
TTag Tag, const Ansi String TagString, TStrings *TagParans,
Ansi String &Repl aceText)

Ansi String S, Tenp, CustNo, FormatString;

Cust oner Tabl e- >Open() ;
Cust oner Tabl e- >First () ;
whi | e (! Cust oner Tabl e- >Eof)
{
Tenp = Cust oner Tabl e- >Fi el dByNane(" Conpany")->AsStri ng;
Cust No = Cust oner Tabl e- >Fi el dByNanme(" Cust No") - >AsStri ng;
Format String =
"¥%s </ a>
";
S = S + Format (Format Stri ng, OPENARRAY(TVar Rec, (CustNo, Tenp)));
Cust oner Tabl e- >Next () ;

Cust oner Tabl e- >Cl ose() ;
Repl aceText = S;

This method retrieves the Company and CustNo fields from each record in the the Customer table, and inserts
them in series of links that look like this:

Kauai Di ve
Shoppe</ a>
Uni sco</ a>
Si ght
Di ver </ a>

21 of 22

If the user clicks on the first of these links, then the server is called with the following URL :
http://eastfarthing/scripts/OneToMany. exe/ O der s?Cust No=1221

Asyou can see, the server is being called with a URI (Pathinfo) of /Orders. Y ou therefore need to set up a new
WebA ctionltem that has /Orders as its Pathinfo.

A query isbeing passed to this OnAction event that looks like this: CustNo=1221. From what you read earlier,
you might think that you would use the QueryFields property of the Request object to parse thisinformation,
and then use the resulting data to compose a SQL statement that would return the data requested by the user.
Indeed, you could take that approach if you wanted. It happens, however, that the VCL has a component, callec
TQueryTableProducer, that will parse the query for you, and that will automatically compose the requisite SQL
to retrieve the correct rows from the Orders table.

To make all thiswork, first drop down a TQueryTableProducer on the TWebModule. Set its Query property to
the OrdersQuery. Now fill in the WebA ctionltem with a Pathinfo of /Orders so that it looks like this:

void _ fastcall TWebModul el:: WebModul elRunQuer yActi on(TObj ect *Sender,
TWebRequest *Request, TWebResponse *Response, bool &Handl ed)

{
Response- >Cont ent = QueryTabl eProducer 1- >Cont ent () ;

}

That's all you need to do! Now when you call your server with the following URL, you will automatically get
the correct rows in your detail table, as shown in Figure 11.

/ scripts/ OneToMany. exe/ Or der s?Cust No=1231

What's important here is that you have composed a Query called CustNo that is set to avalid customer number.
The Query must have the right name, (ie CustNo), or thiswon't work. Y ou can string together multiple fields tc
compose more complex queries, using the & syntax. The following examples shows how you could passin
multiple fieldsif you had a complex query with multiple parameters:

/scripts/ OneToMany. exe/ Or der s?Cust No=1231&Last Nane="Smi t h" &Fi r st Name=" Paul "

If the query had parameters called CustNo, FirstName and LastName, then this kind of URL would be
appropriate.

That's al I'm going to say about databases and queries. Hopefully the examples provided here gives you enougt
information to start creating your own database applications.

Summary

In this paper you have had a tour of the Borland WebBroker technology. The WebBroker is designed to supply
you with components that automatically perform common tasks encountered in this kind of development.

The examples shown in this paper demonstrate how to easily access one or more tables from a database, how tc
parse queries passed in a URL, how to respond to button clicks on HTML forms, and how to carry on adialog
between aweb client and your server.

Back To Top
Home Page

Trademarks & Copyright 71999 INPRISE Corporation.

22 of 22

