
Borland® JBuilder™

and BEA® WebLogic®

Server Integration
Integrating JBuilder 5 Enterprise and
WebLogic Server 6

by Peter Derry, Borland

Preface
Borland® JBuilder™ 5 Enterprise is the most comprehensive

set of award-winning visual development tools for creating

enterprise-scale applications written entirely in the Java™

programming language for the Java 2 platform. JBuilder 5

Enterprise provides integration with the market-leading J2EE

platform application servers Borland AppServer™ 4.1/4.5 and

BEA® WebLogic™ Server 5.1/6.0.

This paper provides an overview of the development,

deployment, and debugging life cycle of Enterprise JavaBeans™

(EJB™) and JSP™ with Borland JBuilder 5 Enterprise and BEA

WebLogic Server 6.0.

This paper is not a reference on developing Enterprise

JavaBeans™, JSPs/Servlets, or Java. Rather, it provides a jump-

start while using JBuilder 5 with WebLogic Server 6.0, allowing

developers to reach maximum productivity in the minimum

amount of time.
Contents
Preface 1

Installing JBuilder and WebLogic Server 2

Configuring JBuilder for WebLogic Server 2

Creating the number guess application 4

Congratulations! 10

Additional information 11

Definitions 11

JBuilder AppBrowser™ 11
To become familiar with the terminology used in this paper,

readers are referred to the Definitions and JBuilder AppBrowser

sections at the end of this paper.

JBuilder™

2

Installing JBuilder and WebLogic Server
When you install JBuilder 5 Enterprise, be sure to opt for “Full

Installation.” This will install JBuilder 5 as well as Borland

AppServer 4.5.1 (BAS 4.5.1). BAS4.5.1 must be installed and

configured in order to develop EJBs, even if the target

AppServer is WebLogic Server. WebLogic Server (service pack 1

or higher) must be installed on the same machine as JBuilder.

For more information on installation, refer to the relevant

installation guide. Note that JBuilder 5 does not include any

software or licenses for WebLogic Server.

Configuring JBuilder for WebLogic
Server
In order to enable EJB development, the enterprise setup and

default project properties need to be configured. Select

enterprise setup (Tools | Enterprise Setup)

Figure 1: Enterprise Setup Dialog

The enterprise setup dialog enables configuration of JBuilder for

CORBA,® application servers and database drivers. For the

purposes of this paper, both the application server and CORBA

setup will be completed. The EJB 2.0 specification mandates the

use of RMI/IIOP for inter-server application interoperability.

IIOP is the communications protocol of CORBA; hence, the

CORBA capabilities of JBuilder often prove essential even to the

EJB developer.

EJB Configuration
Select the application server tab at the top of the Enterprise

Setup dialog box. On the BAS 4.5 tab, enter the installation

directory of BAS and ensure the “enable integration” check box

is selected. This will add the BAS JARs to the JBuilder classpath

and enable the JBuilder EJB wizards and utilities once JBuilder is

restarted.

Complete the WebLogic Server 6.0 tab by entering both the

WebLogic installation directory (default is C:/bea/wlserver6.0)

and the BEA home directory (default is C:/bea). The compiler

for ejbc usage can also be specified if there is a preferred

external compiler to compile the stub files.

Figure 2: WebLogic 6.0 - Enterprise Setup Dialog

Restart JBuilder to enable the integration. Once restarted, check

that the configuration has been successful by creating a new

project (File | New Project), opening the Object Gallery (File |

New) and checking that the EJB wizards are enabled on the

enterprise tab.

JBuilder™

3

Figure 3: EJB Wizards - Object Gallery

Additionally, this EJB configuration will have created three new

libraries (Tools | Configure Libraries) called BAS 4.5, WebLogic

6.0, and WebLogic 6.0 Deploy.

COBRA Configuration
The CORBA capabilities of JBuilder can prove important even

for EJB developers. JBuilder ships with Borland AppServer 4.5,

which is based upon the market-leading ORB® implementation,

VisiBroker® for Java 4.5. JBuilder 5 automatically configures

VisiBroker after BAS 4.5 is configured. To view or edit this

configuration, open the Enterprise Setup dialog (Tools |

Enterprise Setup) and select the CORBA setup tab. Select

VisiBroker from the list of object request brokers and click

“Edit.”

Default Project Properties
Default project settings are stored in a project called Default.jpr

located in the /.jbuilder5 subdirectory of the home directory.

This Default.jpr file is used as a template whenever a new

project is created. JBuilder5 offers a number of properties to

configure projects but for the purposes of this document just the

properties that directly effect WebLogic integration will be

edited. Open the Default Project Properties dialog box (Project

| Default Project Properties)

There are known problems with the ejbc compiler when the

project is created in a directory that contains spaces: default

project properties allow a default directory structure to be

defined that does not contain spaces. On the Paths tab of default

project properties, specify a default working directory (e.g.

C:\JB5Projects), output path (e.g. C:\JB5Projects\classes),

backup path (e.g. C:\JB5Projects\bck), source path (e.g.

C:\JB5Projects\src), and documentation path (e.g.

C:\JB5Projects\docs).

Figure 4: Path Configuration - Default Project Properties

Next, select the servers tab of the Default Project properties

dialog. Select WebLogic 6.0 as the default application server for

EJB development. The servers tab also allows the Web server to

be selected. JBuilder provides Web server plug-ins for WebLogic

6.0, WebLogic 5.1, Tomcat 3.1, Tomcat 3.2, and Tomcat 4.0. If a

choice in the drop-down list is in red, it is available but needs to

be added to JBuilder’s classpath before it can be used. Select the

“Application server is web server” check box to use WebLogic

6.0. Enter the directory that is the root of the Web application in

the default root field or leave it blank, and it will default to the

root directory of the current project.

JBuilder™

4

Figure 5: Application Server Selection - Default Project Properties

While in the Select Application Server dialog, the “Edit” button

can be used to open the Application Server Properties dialog.

This dialog allows parameters such as classpath and VM

parameters to be configured. A common use of this dialog is

installing new WebLogic service packs into the WebLogic

classpath.

Figure 6: WebLogic Server Configuration - Default Project Properties

The EJB run properties allow the VM and application

parameters to be configured for WebLogic when running it

internally to JBuilder. It also provides a way to specify which

EJBs get deployed. Later, we will discuss this topic in greater

detail.

Figure 7: EJB Run Parameters - Default Project Properties

Creating the number guess application
The following sections provide a step–by-step guide to:

• Creating a stateful session bean

• Running the EJB in WebLogic Server internally to JBuilder

• Creating an EJB test client and a JSP client

• Deploying the EJB into a remote WebLogic Server

• Debugging the EJB in the remote WebLogic Server

• Deploying an EAR to the remote WebLogic Server

Technical tips and product tips are included in the relevant

places. These are not required to complete the examples in this

paper, but they do provide some useful information.

Create a new project
Open the new project wizard (File | New Project). Creating the

new project is a three-step process:

JBuilder™

5

Step 1 of 3: Enter the project name as NumberGuess, and leave

the remaining values as the default values set in the Default Project

Properties section of this paper.

Step 2 of 3: Leave default values for paths. Make sure Java 1.3 is

selected as the JDK and WebLogic 6.0 is the only library under

Required libraries.

Step 3 of 3: Enter Number Guess under the title and your name

and company under Author/Company.

Create the Enterprise JavaBean
Open the Object Gallery (File | New) and select Enterprise

JavaBean from the Enterprise tab. This also is a three-step

process:

Step 1 of 3: Select the “New” button to create a new EJB group.

Enter the name of the EJB group as NumberGDemo, and leave

the remaining values as the defaults. Select “OK,” then “Next.”

Step 2 of 3: Enter the class name as NumberGDemoBean, and

check the radio button next to the stateful session bean. Select

“Next.”

Step 3 of 3: Leave the default values and select “Finish.”

Product Tips
An EJB group is a logical grouping of one or more beans that will

be deployed in a single JAR file. There are two formats

for EJB groups, binary (ejbgrp) and XML (ejbgrpx). If working

with a version control system, the .ejbgrpx file extension may be

more suitable, as it makes it easy to merge results.

Adding business logic to the EJB
The EJB wizard has created 3 Java files:

NumberGDemoBean.java is the actual EJB class;

NumberGDemo.java is the remote interface, and

NumberGDemoHome.java is the home interface.

Add the following code to the EJB (NumberGDemoBean.java) :
 import java.util.*;

 private int theValue;

 private int numberGuesses;

 private String theResult;

 public String makeGuess(String guess) {

 numberGuesses++;

 int intGuess = Integer.parseInt(guess);

 if (intGuess == theValue) {

 theResult = "Well Done! You guessed it in " + numberGuesses +

 ". Number reset, why not try better next time!!";

 this.setValue();

 }

 else if (intGuess < theValue) {

 theResult = "Try higher";

 }

 else if (intGuess > theValue) {

 theResult = "Try lower";

 }

 return theResult;

 }

 public void setValue() {

 numberGuesses = 0;

 theValue = Math.abs(new Random().nextInt() % 100) + 1;

 }

Technical Tips
The enterprise bean provider defines the remote and home

interfaces and implements the enterprise bean class itself. The

remote interface provides the calling interface to the client for the

business logic methods implemented by the enterprise bean. The

home interface provides methods to locate and create instances of

the remote interface.

Update the remote interface
While NumberGDemoBean.java is the active file, select the bean

tab and then the methods tab. The method tab displays the

public methods defined in an EJB and automates exposing them

through the remote interface. Select the check boxes next to

makeGuess and setValue.

Figure 8: Expose Methods Through Remote Interface

JBuilder™

6

Technical Tips
The remote interface defines the application-specific operations

that a client may invoke. These are the public business methods

which can be invoked by clients and which are actually

implemented in the enterprise bean class. Note that clients of an

enterprise bean do not access the bean directly; instead, they

access its methods through its remote interface.

Compiling the EJB
Make the project (Project| Make Project “NumberGuess.jpx”).

This will make the EJB, invoke the WebLogic EJBC compiler to

create the stub files, and package it all into a JAR file called

NumberGDemo.jar.

Product Tips
The EJBC compilation process is slow, so it may be a good idea

to disable the EJBC compiler until it is needed. This can be done

by right-clicking the EJB group in the project pane and selecting

“properties.” Inside the build tab there is a WebLogic 6.0 tab.

Switch off “Use EJBC to generate stub files” by removing the

check from the check box.

The run tab of the default project properties (Project | Default

Project Properties) contains two check boxes called “Compile

before running” and “Compile before debugging.” As projects get

larger and compilations take longer it is advisable to switch off

these options.

Looking at the deployment descriptors
The deployment descriptors (DD) are maintained through the

EJB group. Double-clicking the EJB group will activate the DD

editor. The DD editor is a GUI that sits on top of the DD XML

files. It creates both the standard XML files and the proprietary

XML files required by each of the supported application servers.

The XML source files can be viewed directly by selecting the

EJB DD source tab at the base of the DD editor.

Figure 9: EJB Deployment Descriptor Source Tab

Three XML files now have been created: ejb-jar.xml is the

standard DD; ejb-inprise.xml is the Borland-specific DD, and

WebLogic-ejb-jar.xml is the WebLogic Server-specific DD.

These XML files can be edited directly from this view; to avoid

syntax errors, however, it is recommended that the EJB DD

editor tab be selected and that changes be made through the

GUI. For the purposes of this example, no changes are required

in the DD.

Technical Tips
The role of the deployment descriptor is to provide information

about each EJB that is to be bundled and deployed in a particular

EJB JAR file. The information in the deployment descriptor is

used in setting EJB attributes. These attributes define how the

EJB operates within a particular environment. For example, when

the EJB’s transactional attributes are set, they define how the EJB

operates when involved with a transaction.

Product Tips

JBuilder™

7

To view WebLogic Server-specific properties, double-click the

EJB group node in the project pane. Click the relevant enterprise

bean in the structure pane, and select the EJB properties tab.

If an external editor is used to modify DD files, then these can be

imported back into JBuilder by right-clicking the EJB group node,

selecting properties, and using the “Add,” “Copy,” and “Delete”

buttons on the EJB tab inside the build tab.

Running the EJB inside JBuilder
Right-click the EJB group in the project pane and select “Run.”

WebLogic Server starts inside the JBuilder environment, and

standard out is redirected to a message pane. The EJB is

deployed during startup. Start the WebLogic Server console and

log into this instance of WebLogic Server to verify that

NumberGDemo.jar has been deployed. The EJB is now ready to

start taking invocations.

Product Tips
When running WebLogic Server internal to JBuilder, WebLogic

Server can be configured as required from the Run/EJB tab of

the project properties. For example, specifying -

DWebLogic.management.password in the VM parameters allows

WebLogic Server to start without prompting for a password, and

WebLogic Server can then be closed down cleanly.

Creating an EJB test client
Open the Object Gallery (File | New) and select “EJB Test

Client” from the Enterprise tab. Leave all the values as the

defaults, and JBuilder will create

NumberGDemoTestClient1.java, which contains EJB access

code for NumberGDemoBean.

Edit NumberGDemoTestClient1.java to set the variables “user”

and “password” equal to the required values; this will allow you

to gain access to WebLogic Server. Add the following line of

code to the main of NumberGDemoTestClient1.java:

 client.create();

 client.makeGuess("50");

Right-click NumberGDemoTestClient.java, and then make it

run to test the business methods of the EJB.

Product Tips
The EJB test client is designed to allow bean developers to quickly

test the EJB that has been created. It is not recommended that

this code be used for the final production application.

The main purpose for the EJB test client is to abide the EJB

philosophy of allowing the EJB developer to concentrate on

writing the business logic and not get mired in other areas, such as

updating clients.

Creating a JSP client
Open the Object Gallery (File | New) and select “Web

Application” from the Web tab. Type “NumberGClient” as both

the name of the Web application and the directory name. Select

the “generate WAR” check box and click “OK.” A new

directory called NumberGClient will be created under the

project directory as the default root for this Web application. It

is important that the default root is not the same as the project

directory.

Open the Object Gallery (File | New) and select “Java Server

Page” from the Web tab. Creating the new JSP is a three stage

process:

Step 1 of 3: Ensure NumberGClient is selected as the WebApp,

leave the remaining values as defaults.

Step 2 of 3: Leave the default values

Step 3 of 3: Select “Finish.”

A default JSP file called Jsp1.jsp will be created. If using Borland

Enterprise Studio for Java, Macromedia® Dreamweaver®

UltraDev™ can be used to modify the .jsp file. Alternatively,

replace all the code in Jsp1.jsp with the code below.
<html>

<head>

<jsp:useBean id="Jsp1BeanId" scope="session" class="numberguess.Jsp1Bean"

/>

<jsp:setProperty name="Jsp1BeanId" property="*" />

<title>

JBuilder™

8

Jsp1

</title>

</head>

<body bgcolor="#ffc800">

<h1> Number Guess</h1>

<form method="post">

 <p>

 My Guess Is:

 <input name="sample">

 </p>

 <p>

 <input type="submit" name="Submit" value="Submit Guess">

 </p>

 <p>

 <jsp:getProperty name="Jsp1BeanId" property="sample" />

 </p>

</form>

</body>

</html>

Edit Jsp1Bean.java as shown below
package numberguess;

public class Jsp1Bean {

 private String sample = "Guess a number between 1 and 100";

 NumberGDemoTestClient1 numberGDemoTestClient1

 = new NumberGDemoTestClient1();

 public Jsp1Bean() {

 numberGDemoTestClient1.create();

 numberGDemoTestClient1.setValue();

 }

 /**Access sample property*/

 public String getSample() {

 return sample;

 }

 /**Access sample property*/

 public void setSample(String newValue) {

 if (newValue!=null) {

 sample = numberGDemoTestClient1.makeGuess(newValue);

 }

 }

}

JBuilder 5 can check JSPs for errors at build time. Disable this

functionality on the Build/JSP tab of Project Properties (Project

| Project Properties) by unselecting the “Check JSPs for errors

at build-time” checkbox. Alternatively, make sure that WebLogic

Server is running and allow JBuilder to check the JSP. Make the

project (Project| Make Project “NumberGuess.jpx”). Select

Jsp1.jsp from inside the WebApp (NumberGClient/Root

Directory/Jsp1.jsp), right-click, and select “Web Run.”

WebLogic Server will start inside the JBuilder environment and

run the JSP.

Product Tips
A WebApp describes the structure for a Web application. It is

essentially a directory tree containing Web content used in your

application. A deployment descriptor file called web.xml is

always associated with each WebApp. This deployment descriptor

contains the information you need to provide to your Web server

when you deploy your application.

The JBuilder environment can become crowded when multiple

applications are being run, debugged, and edited. This problem

can easily be resolved by starting a clean copy of the JBuilder

AppBrowser™ (Window | New Browser).

Running the JSP from inside JBuilder starts WebLogic Server on

port 8080, so the internal WebLogic Server should not conflict

with any existing running instances of WebLogic Server. JBuilder

creates a backup of the WebLogic Server configuration file called

config.xml.before.JBuilder.WebRun.

Technical Tips
A WAR file is an archive file for a Web application. It's similar to

a JAR file. By storing your entire application and the resources it

needs within the WAR file, deployment becomes easier.

Deploying the EJB to an external WebLogic
Server
Ensure the internal version of WebLogic Server is not running

and start WebLogic Server externally. In the project pane, open

the NumberGDemo.ejbgrp, right-click the JAR file inside, and

select “Deploy Options for NumberGDemo.jar / Deploy.”

Enter the password and unit name for the deployment. JBuilder

calls the WebLogic Server API to deploy the EJB JAR file. Note

JBuilder™

9

that the same method is used to re-deploy, un-deploy, and list

deployments. If the EJB already exists in WebLogic Server, it

may be necessary either to use re-deploy or to remove it from

WebLogic Server before deployment. Test the EJB with the EJB

Test Client and/or the JSP Client.

Product Tips
If there is a requirement for editing XML files, JBuilder provides

extensive capabilities. Adding XML configuration files to a

JBuilder project can save time and reduce the risk of syntax errors.

JBuilder also provides a history of changes, which can prove very

useful if errors are made while editing configuration files.

The command-line deployment used to deploy from JBuilder to

WebLogic Server has several useful options such as –host, -port,

and -username. Details can be found in the WebLogic Server Admin

Guide.

Debugging an EJB running in WebLogic
Server
Make a copy of the WebLogic Server startup file and edit the

start command to include the following VM parameters:
-classic -Xdebug -Xnoagent -Djava.compiler=NONE -

Xrunjdwp:transport=dt_socket,address=8888,suspend=n,server=y

Note that –classic must be the first parameter passed to the VM.

Start WebLogic Server using this new startup file, and WebLogic

Server will start in debug mode. It will be listening on port 8080

for a remote process such as JBuilder to attach and start

debugging it.

Open the Run Configurations dialog (Run | Configurations) and

click the “New” button. Enter a configuration name of “Remote

Debug WebLogic Server.” Select the debug tab, select the

“Enable remote debugging” checkbox, select “Attach radio

button,” enter the name of the host, and set the address to 8888.

Figure 10: Run Configurations, Enable Remote Debugging

To start this configuration, select “Remote Debug WebLogic

Server” from the drop-down list on the main tool bar on the

right-hand side of the “Debug project” button.

Figure 11: Running “Remote Debug WebLogic Server”

A message pane will appear. It initially should be blank. If there

are any connection errors, they will appear in this window. Add

breakpoints to the EJB by clicking in the left margin of the

source code. Invoke the EJB from the client and execution stops

at the breakpoint.

Product Tips
JBuilder supports the Java Platform Debugging Architecture

(JPDA), which is used to remote debug any Java program running

in any VM that supports JPDA. For example, JBuilder can also

debug servlets and JSPs in a remote WebLogic Server. In the case

JBuilder™

10

of JSPs, the generated source must be added to the JBuilder

project. For more details of the available options, see:

http://java.sun.com/products/jpda/

An alternative way to debug an EJB inside JBuilder is to select the

EJB group in the project pane, right-click, and select “debug.”

WebLogic Server will start internally to JBuilder, and breakpoints

can be added to the EJB source code.

Technical Tips
A very common error when starting a VM in debug mode is

“Can't load jdwp.dll, because can't find dependent libraries.” Most

often, this error occurs when JPDA has not been installed. JPDA

can be downloaded from http://java.sun.com/products/jpda/

Deploying an enterprise archive file
Open the Object Gallery (File | New) and select “EAR” from

the enterprise tab. Creating an EAR file is a 5 step process:

Step 1 of 5: Leave the default name as NumberGuess and select

“Next.”

Step 2 of 5: Select the EJB group NumberGDemo.ejbgrp and

select “Next.”

Step 3 of 5: The project does not contain any RAR files, so

select “Next.”

Step 4 of 5: Java client modules are not required, so select

“Next.”

Step 5 of 5: Select the WebApp node NumberGClient and

select “Finish.”

Ensure that the external WebLogic Server is running. Make the

project to create the EAR file, and select NumberGuess.ear from

inside NumberGuess.eargrp in the project pane. Right-click the

EAR file inside and select “Deploy Options for

NumberGuess.ear / Deploy.” If requested, enter the password

and unit name for the deployment. JBuilder calls the WebLogic

Server API to deploy the EAR file. Assuming WebLogic Server

is configured as default, run the application from a browser

using the following URL:

http://localhost:7001/NumberGClient/Jsp1.jsp

Technical Tips
EAR files contain other archive files such as WARs, JARs, and

RARs that together make up an enterprise application.

Congratulations!
You have just created a simple application using JBuilder and

WebLogic Server. We hope this paper helps developers

understand the way Borland JBuilder 5 Enterprise continues to

improve developer productivity.

JBuilder 5 Enterprise has many more features that could not be

covered in such a short paper. Please refer to the Additional

Information section, the JBuilder Help System, or contact your local

Borland representative for details about Borland training and

consulting services.

http://java.sun.com/products/jpda/
http://java.sun.com/products/jpda/
http://localhost:7001/NumberGClient/Jsp1.jsp

JBuilder™

11

Additional information
Borland JBuilder

http://www.borland.com/jbuilder/

Borland Enterprise Studio for Java

http://www.borland.com/estudio/

Sun Microsystems Java 2 Platform Enterprise Edition

http://java.sun.com/j2ee/

Sun Microsystems Enterprise JavaBeans

http://java.sun.com/products/ejb/

BEA WebLogic Server

http://www.beasys.com

Clustering techniques

http://www.borland.com/appserver/papers/clustering.html

JBuilder Open Tools

http://www.borland.com/jbuilder/resources/jbopentools.html

Borland AppCenter™

http://www.borland.com/appcenter/

Borland AppServer

http://www.borland.com/appserver/

Borland newsgroups

http://www.borland.com/newsgroups/

Definitions
Acronym Description

CORBA Common Object Request Broker Architecture

EJB Enterprise Java Beans

RMI Remote Method Invocation

JPDA Java Platform Debugger Architecture

IIOP Internet Inter-ORB Protocol

BAS Borland AppServer

DD Deployment Descriptor

EAR Enterprise Archive

WAR Web Archive

JAR Java Archive

VM Virtual Machine

JSP Java Server Page

XML Extensible Markup Language

JBuilder AppBrowser
JBuilder uses one window to perform most development

functions: editing, visual designing, navigating, browsing, and

debugging. This window is called the AppBrowser. The

terminology used when referring to different sections of the

AppBrowser is detailed in Figure 12.

Figure 12: The JBuilder AppBrowser

Made in Borland® Copyright © 2001 Borland Software Corporation. All rights reserved. All
Borland brand and product names are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries. Java and all Java-based marks are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.
CORBA and ORB are registered trademarks of Object Management Group, Inc. in the U.S. and
other countries. All other marks are the property of their respective owners. 12289

100 Enterpr i se Way
Scot t s Va l ley , CA 95066-3249
www.bor land.com | 831-431-1000

http://www.borland.com/jbuilder/
http://www.borland.com/estudio/
http://java.sun.com/j2ee/
http://java.sun.com/products/ejb/
http://www.beasys.com
http://www.borland.com/appserver/papers/clustering.html
http://www.borland.com/jbuilder/resources/jbopentools.html
http://www.borland.com/appcenter/
http://www.borland.com/appserver/
http://www.borland.com/newsgroups/

	Preface
	
	Installing JBuilder and WebLogic Server

	Configuring JBuilder for WebLogic Server
	EJB Configuration
	COBRA Configuration
	Default Project Properties

	Creating the number guess application
	Create a new project
	Create the Enterprise JavaBean
	Adding business logic to the EJB
	Update the remote interface
	Compiling the EJB
	Looking at the deployment descriptors
	Running the EJB inside JBuilder
	Creating an EJB test client
	Creating a JSP client
	Deploying the EJB to an external WebLogic Server
	Debugging an EJB running in WebLogic Server
	Deploying an enterprise archive file

	Congratulations!
	Additional information
	Definitions
	JBuilder AppBrowser

