TIA-32 Intel® Architecture
Software Developer’s
Manual

Volume 1:
Basic Architecture

NOTE: The IA-32 Intel Architecture Software Developer’s Manual
consists of three volumes: Basic Architecture, Order Number 245470-011;
Instruction Set Reference, Order Number 245471-011; and the System
Programming Guide, Order Number 245472-011.

Please refer to all three volumes when evaluating your design needs.

2003

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT
INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or
“undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

The Intel® I1A-32 architecture processors (e.q., Pentium® 4 and Pentium IIl processors) may contain design defects or
errors known as errata. Current characterized errata are available on request.

Intel, Intel386, Intel486, Pentium, Intel Xeon, Intel NetBurst, Intel SpeedStep, MMX, Celeron, and Itanium are
trademarks or registered trademarks of Intel Corporation and its subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature,
may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect IL 60056-7641

or call 1-800-879-4683
or visit Intel’s website at http://www.intel.com

COPYRIGHT © 1997 - 2003 INTEL CORPORATION

intel.

CONTENTS
PAGE
CHAPTER 1
ABOUT THIS MANUAL
1.1. IA-32 PROCESSORS COVERED INTHISMANUALt 1-1
1.2 OVERVIEW OF THE /A-32 INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 1: BASIC ARCHITECTURE 1-2
1.3. NOTATIONAL CONVENTIONS. e 1-3
1.3.1. Bitand Byte Order. 1-3
1.3.2. Reserved Bits and Software Compatibility 1-4
1.3.3. Instruction Operands.t e 1-5
1.3.4. Hexadecimal and Binary Numbers 1-5
1.3.5. Segmented ADAressing v it 1-5
1.3.6. EXCEPHONS. . ot e e 1-6
1.4. RELATED LITERATURE e e 1-6
CHAPTER 2
INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE
2.1. BRIEF HISTORY OF THE IA-32 ARCHITECTURE. 2-1
2.1.1. The First MiCrOprOoCESSOrS v v ittt e e e e e 2-1
2.1.2. Introduction of Protected Mode Operation. 2-2
2.1.3. Advent of 32-bit Processors 2-2
2.1.4. The INtel486™ ProCesSOro v vttt e 2-2
2.1.5. The Intel® Pentium® Processort 2-3
2.1.6. The P6 Family of Processors e 2-3
2.1.7. The Intel Pentium 4 Processort e 2-5
2.1.8. The Intel® Xeon™ ProCessoro vttt 2-5
2.1.9. The Intel Pentium M Processor. e 2-6
2.2. MORE ON MAJOR TECHNICAL ADVANCES 2-6
2.2.1. The P6 Family Micro-architecture i 2-7
2.2.2. Streaming SIMD Extensions 2 (SSE2) Technology 2-8
2.2.3. The Intel NetBurst Micro-Architecture i 2-9
2.2.3.1. The Front End Pipeline. 2-11
2.23.2. OUT-OF-order Execution Core.ottt 2-12
2.2.3.3. Retirement Unit. 2-12
2.2.4. Hyper-Threading Technology e 2-12
2.2.41. Notes on Implementation 2-14
2.3. MOORE’S LAW AND IA-32 PROCESSOR GENERATIONS 2-14
CHAPTER 3
BASIC EXECUTION ENVIRONMENT
3.1. MODES OF OPERATION e e 3-1
3.2 OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT 3-2
3.3. MEMORY ORGANIZATION. e e 3-5
3.3.1. Modes of Operation vs. Memory Model. 3-7
3.3.2. 32-Bit vs. 16-Bit Address and Operand Sizes. 3-7
3.3.3. Extended Physical Addressingt e 3-8
3.4. BASIC PROGRAM EXECUTION REGISTERS it 3-8
3.4.1. General-Purpose Registers. 3-8
3.4.2. Segment Registers 3-10

CONTENTS |nte| ®

PAGE
3.4.3. EFLAGS Registert 3-12
3.4.3.1. Status Flags oo 3-14
3.4.3.2. DF Flag. . o oot 3-15
3.4.4. System Flagsand IOPL Field e 3-15
3.5. INSTRUCTION POINTERo e 3-16
3.6. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES. 3-16
3.7. OPERAND ADDRESSING.t ittt e e 3-17
3.7.1. Immediate Operands.ttt 3-18
3.7.2. Register Operands 3-18
3.7.3. Memory Operands.ottt 3-19
3.7.3.1. Specifyinga Segment Selector. 3-19
3.7.3.2. Specifyingan Offset e 3-20
3.7.3.3. Assembler and Compiler AddressingModes 3-22
3.7.4. /O Port Addressingo v e it e e e 3-22
CHAPTER 4
DATA TYPES
4.1. FUNDAMENTAL DATA TYPES. . ..« e 4-1
4.1.1. Alignment of Words, Doublewords, Quadwords, and Double Quadwords 4-2
4.2. NUMERIC DATA TYPES . . .« o e e 4-3
4.21. INtEgerS . . o e 4-4
4.2.1.1. Unsigned Integers.o 4-4
4.2.1.2. Signed Integers.o e 4-4
422, Floating-Point Data Types.ot et 4-5
4.3. POINTER DATA TYPES . ..o e e 4-7
4.4. BITFIELD DATA TYPE . . oo o e e 4-7
4.5. STRING DATA TYPES . .. e 4-8
4.6. PACKED SIMD DATA TYPESo e 4-8
4.6.1. 64-Bit SIMD Packed Data Types. oot e 4-8
4.6.2. 128-Bit Packed SIMD Data Types. oot e e 4-9
4.7. BCD AND PACKEDBCD INTEGERS e 4-10
4.8. REAL NUMBERS AND FLOATING-POINT FORMATS.o ... 4-11
4.8.1. Real Number System 4-12
4.8.2. Floating-Point Format 4-12
482.1. Normalized Numbers e 4-14
4.8.2.2. Biased EXponent. e 4-14
4.8.3. Real Number and Non-number Encodings 4-14
4.8.3.1. Signed Zeros 4-16
4.8.3.2. Normalized and Denormalized Finite Numbers 4-16
4.8.3.3. Signed Infinities 4-17
4.8.34. NaNS. . 4-17
4.8.3.5. Operatingon SNaNsand QNaNs. 4-18
4.8.3.6. Using SNaNs and QNaNs in Applications 4-19
4.8.3.7. QNaN Floating-Point Indefinite. 4-19
4.8.4. Roundingo 4-19
484.1. Rounding Control (RC) Fields. i 4-21
4.84.2. Truncation with SSE and SSE2 Conversion Instructions 4-21
4.9. OVERVIEW OF FLOATING-POINT EXCEPTIONS. it 4-21
4.91. Floating-Point Exception Conditions 4-23
4.91.1. Invalid Operation Exception (#1)o 4-23
4.9.1.2. Denormal Operand Exception (#D), 4-23
4.91.3. Divide-By-Zero Exception (#Z) oot 4-24

|nte| . CONTENTS

PAGE
4.9.1.4. Numeric Overflow Exception (#0O) 4-24
4.9.1.5. Numeric Underflow Exception (#U). 4-25
4.9.1.6. Inexact-Result (Precision) Exception (#P) 4-26
492 Floating-Point Exception Priority 4-27
4.9.3. Typical Actions of a Floating-Point Exception Handler 4-28
CHAPTER 5
INSTRUCTION SET SUMMARY
5.1. GENERAL-PURPOSE INSTRUCTIONS e 5-2
5.1.1. Data Transfer Instructions 5-2
5.1.2. Binary Arithmetic Instructions 5-3
5.1.3. Decimal Arithmetic. 5-4
5.1.4. Logical Instructions 5-4
5.1.5. Shift and Rotate Instructions 5-4
5.1.6. Bitand Byte Instructions 5-5
51.7. Control Transfer Instructions i 5-6
5.1.8. String INStructions 5-7
5.1.9. Flag Control Instructions 5-8
5.1.10. Segment Register Instructions. 5-8
5.1.11. Miscellaneous Instructions. 5-9
5.2. X87 FPU INSTRUCTIONSo e e e 5-9
5.2.1 Data Transfer.o 5-9
522 Basic Arithmetic. 5-10
5.2.3 COMPANISON . . .t ottt e e 5-11
524 Transcendental e 5-11
5.25 Load Constantst tee 5-12
5.2.6. X87 FPU Control 5-12
5.3. X87 FPU AND SIMD STATE MANAGEMENTo 5-13
5.4. SIMD INSTRUCTIONS. . .. e e 5-13
5.5. MMX INSTRUCTIONS . . . e 5-15
5.5.1 Data Transfer Instructions 5-15
5.5.2. Conversion InStructions 5-16
5.5.3. Packed Arithmetic Instructions 5-16
55.4 Comparison Instructions 5-17
5.5.5 Logical Instructions 5-17
5.5.6. Shift and Rotate Instructions 5-17
5.5.7 State Management 5-18
5.6. SSE INSTRUCTIONS ... e e 5-18
5.6.1 SSE SIMD Single-Precision Floating-Point Instructions 5-18
5.6.1.1. SSE Data Transfer Instructions 5-18
5.6.1.2 SSE Packed Arithmetic Instructions 5-19
5.6.1.3 SSE Comparison Instructions. o i 5-20
5.6.1.4 SSE Logical Instructions. 5-20
5.6.1.5 SSE Shuffle and Unpack Instructions.o .. 5-20
5.6.1.6 SSE Conversion Instructions i 5-21
5.6.2 MXCSR State Management Instructions. 5-21
5.6.3 SSE 64-Bit SIMD Integer Instructions L. 5-21
5.6.4 SSE Cacheability Control, Prefetch, and Instruction Ordering Instructions.. . .. 5-22
5.7. SSE2 INSTRUCTIONS . .. o e e 5-22
5.7.1. SSE2 Packed and Scalar Double-Precision Floating-Point Instructions 5-23
5.7.1.1. SSE2 Data Movement Instructions. i i 5-23
5.71.2. SSE2 Packed Arithmetic Instructions 5-23

CONTENTS |nte| ®

PAGE

5.7.1.3. SSE2 Logical Instructions. 5-24
5.7.1.4. SSE2 Compare Instructions 5-24
5.7.1.5. SSE2 Shuffle and Unpack Instructions. 5-25
5.7.1.6. SSE2 Conversion Instructions i 5-25
5.7.2. SSE2 Packed Single-Precision Floating-Point Instructions. 5-26
5.7.3. SSE2 128-Bit SIMD Integer Instructions 5-26
5.7.4. SSE2 Cacheability Control and Instruction Ordering Instructions. 5-27
5.8. SYSTEM INSTRUCTIONS. e 5-27
CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS
6.1. PROCEDURE CALL TYPES e 6-1
6.2. ST A CK . e 6-1
6.2.1. SettingUpasStack. 6-2
6.2.2. Stack Alignment. 6-3
6.2.3. Address-Size Attributes for Stack Accesses oo i 6-3
6.2.4. Procedure Linking Information. 6-3
6.2.4.1. Stack-Frame Base Pointer 6-4
6.2.4.2. Return Instruction Pointer. 6-4
6.3. CALLING PROCEDURES USING CALLANDRET, 6-4
6.3.1. Near CALL and RET Operation.ot 6-5
6.3.2. Far CALLand RET Operation. 6-5
6.3.3. Parameter Passingt 6-6
6.3.3.1. Passing Parameters Through the General-Purpose Registers 6-6
6.3.3.2. Passing Parametersonthe Stack L. 6-7
6.3.3.3. Passing Parametersinan Argument List. 6-7
6.3.4. Saving Procedure State Information i 6-7
6.3.5. Calls to Other Privilege Levels i 6-7
6.3.6. CALL and RET Operation Between Privilege Levels 6-9
6.4. INTERRUPTS AND EXCEPTIONSo e 6-10
6.4.1. Call and Return Operation for Interrupt or Exception Handling Procedures6-11
6.4.2. Calls to Interrupt or Exception Handler Tasks. 6-15
6.4.3. Interrupt and Exception Handling in Real-AddressMode 6-15
6.4.4. INT n, INTO, INT 3, and BOUND Instructions. 6-15
6.4.5. Handling Floating-Point Exceptions. 6-16
6.5. PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES. 6-16
6.5.1. ENTER InStruction.o e e 6-17
6.5.2. LEAVE Instruction e 6-22
CHAPTER 7
PROGRAMMING WITH THE
GENERAL-PURPOSE INSTRUCTIONS
7.1. PROGRAMMING ENVIRONMENT FOR THE GENERAL-PURPOSE

INSTRUCTIONS .. o e e e 7-1
7.2. SUMMARY OF THE GENERAL-PURPOSE INSTRUCTIONS 7-2
7.21. Data Movement Instructions 7-3
7.2.1.1. General Data Movement Instructions. oL 7-3
7.21.2. Exchange Instructions 7-4
7.2.1.3. Stack Manipulation Instructions 7-6
7.2.1.4. Type Conversion Instructionsot 7-8
7.2.2. Binary Arithmetic Instructions 7-9
7.22.1. Addition and Subtraction Instructions L o 7-9

vi

intel.

CONTENTS
PAGE
7.22.2. Increment and Decrement Instructions. 7-9
7.2.2.3. Comparison and Sign Change Instruction 7-10
7.2.2.4. Multiplication and Divide Instructions 7-10
7.2.3. Decimal Arithmetic Instructions 7-10
7.2.3.1. Packed BCD Adjustment Instructions. 7-11
7.2.3.2. Unpacked BCD Adjustment Instructions. 7-11
7.2.4. Logical Instructions e 7-12
7.2.5. Shift and Rotate Instructions 7-12
7.2.5.1. Shift Instructions 7-12
7.25.2. Double-Shift Instructions. 7-14
7.2.5.3. Rotate Instructions 7-14
7.2.6. Bit and Byte Instructions 7-16
7.2.6.1. Bit Test and Modify Instructions 7-16
7.2.6.2. Bit ScanInstructions 7-16
7.2.6.3. Byte Set on Condition Instructions 7-16
7.2.6.4. TestInstruction o e 7-17
7.2.7. Control Transfer Instructions i 7-17
72.7.1. Unconditional Transfer Instructions 7-17
7.2.7.2. Conditional Transfer Instructions 7-18
7.2.7.3. Software Interrupts 7-21
7.2.8. String Operations. 7-21
7.2.8.1. Repeating String Operations. i 7-22
7.2.9. /O INSIIUCHIONS. oo e 7-23
7.2.10. Enter and Leave Instructions. i 7-23
7.2.11. EFLAGS INStructionsot 7-23
7.211.1. Carry and Direction Flag Instructionso .. 7-24
7.211.2. Interrupt Flag Instructions 7-24
7.2.11.3. EFLAGS TransferInstructions i 7-24
7.2.11.4. Interrupt Flag Instructions 7-25
7.212. Segment Register Instructions. 7-25
7.212.1. Segment-Register Load and Store Instructions 7-25
7.212.2. Far Control Transfer Instructions oo .. 7-26
7.212.3. Software Interrupt Instructions o 7-26
7.212.4. Load Far Pointer Instructions i 7-26
7.2.13. Miscellaneous INsStructions. 7-26
7.2.13.1. Address Computation Instruction 7-26
7.2.13.2. Table Lookup Instructions. e 7-27
7.2.13.3. Processor Identification Instruction. 7-27
7.2.13.4. No-Operation and Undefined Instructions. 7-27
CHAPTER 8
PROGRAMMING WITH THE X87 FPU
8.1. X87 FPU EXECUTION ENVIRONMENT e 8-1
8.1.1. x87 FPU Data Registers 8-2
8.1.1.1. Parameter Passing With the x87 FPU Register Stack 8-4
8.1.2. x87 FPU Status Register. 8-5
8.1.2.1. Top of Stack (TOP) Pointer. e 8-5
8.1.2.2. Condition Code Flags oot 8-5
8.1.2.3. x87 FPU Floating-Point ExceptionFlags 8-6
8.1.2.4. Stack FaultFlag 8-7
8.1.3. Branching and Conditional Moves on Condition Codes 8-8
8.1.4. X87 FPU Control Word.o e 8-9

vii

CONTENTS |nte| ®

PAGE

8.1.4.1. x87 FPU Floating-Point Exception Mask Bits. 8-10
8.1.4.2. Precision Control Field e 8-10
8.1.4.3. Rounding Control Field. 8-10
8.1.5. Infinity Control Flago e 8-11
8.1.6. X87 FPU Tag Wordo e 8-11
8.1.7. x87 FPU Instruction and Data (Operand) Pointers 8-12
8.1.8. Last Instruction Opcode. it 8-12
8.1.8.1. Fopcode Compatibility Mode i 8-12
8.1.9. Saving the x87 FPU’s State with the FSTENV/FNSTENYV and

FSAVE/FNSAVE Instructionst 8-13
8.1.10. Saving the x87 FPU’s State with the FXSAVE Instruction 8-15
8.2. X87 FPU DATA TYPES . . oo e 8-15
8.2.1 Indefinites 8-17
8.2.2 Unsupported Double Extended-Precision Floating-Point Encodings

and Pseudo-Denormals.o 8-17
8.3. X86 FPU INSTRUCTION SETo e 8-19
8.3.1. Escape (ESC) Instructions i 8-19
8.3.2. x87 FPU Instruction Operandst 8-19
8.3.3. Data Transfer Instructions. 8-19
8.3.4. Load Constant Instructions 8-21
8.3.5. Basic Arithmetic Instructions 8-22
8.3.6. Comparison and Classification Instructions. 8-23
8.3.6.1. Branching on the x87 FPU ConditionCodes 8-25
8.3.7. Trigonometric Instructions. 8-26
8.3.8. P 8-26
8.3.9. Logarithmic, Exponential,and Scale. 8-27
8.3.10. Transcendental Instruction Accuracyc. i, 8-28
8.3.11. x87 FPU Control Instructions. 8-28
8.3.12. Waiting Vs. Non-waiting Instructions. 8-29
8.3.13. Unsupported x87 FPU Instructions i i 8-30
8.4. X87 FPU FLOATING-POINT EXCEPTION HANDLING 8-30
8.4.1. Arithmetic vs. Non-arithmetic Instructions. 8-31
8.5. X87 FPU FLOATING-POINT EXCEPTION CONDITIONS 8-32
8.5.1. Invalid Operation Exception. e 8-32
8.5.1.1. Stack Overflow or Underflow Exception (#1S). 8-33
8.5.1.2. Invalid Arithmetic Operand Exception (#IA) 8-34
8.5.2. Denormal Operand Exception (#D)t 8-35
8.5.3. Divide-By-Zero Exception (#Z)ot 8-35
8.5.4. Numeric Overflow Exception (#O). i 8-36
8.5.5. Numeric Underflow Exception (#U) i 8-37
8.5.6. Inexact-Result (Precision) Exception (#P). i 8-38
8.6. X87 FPU EXCEPTION SYNCHRONIZATION 8-39
8.7. HANDLING X87 FPU EXCEPTIONS IN SOFTWARE. 8-40
8.7.1. Native Mode 8-40
8.7.2. MS-DOS* Compatibility Mode. 8-41
8.7.3. Handling x87 FPU Exceptionsin Software 8-42
CHAPTER 9
PROGRAMMING WITH THE INTEL MMX TECHNOLOGY
9.1. OVERVIEW OF THE MMX TECHNOLOGYot 9-1
9.2. THE MMX TECHNOLOGY PROGRAMMING ENVIRONMENT 9-2
9.2.1. MMX Registers 9-2

viii

intel.

9.2.2. MMX Data TYypes. . .. oot e
9.2.3. Memory Data Formats.
9.2.4. Single Instruction, Multiple Data (SIMD) Execution Model
9.3. SATURATION AND WRAPAROUND MODES
9.4. MMX INSTRUCTIONS e
9.4.1. Data Transfer Instructions
9.4.2. Arithmetic Instructions
9.4.3. Comparison Instructions i
9.4.4. Conversion Instructions
9.4.5. Unpack Instructions e
9.4.6. Logical Instructions
9.4.7. Shift Instructions e
9.4.8. EMMS Instruction
9.5. COMPATIBILITY WITH X87 FPU ARCHITECTURE
9.5.1. MMX Instructions and the x87 FPU TagWord
9.6. WRITING APPLICATIONS WITHMMXCODE
9.6.1. Checking for MMX Technology Support
9.6.2. Transitions Between x87 FPUand MMX Code
9.6.3. Using the EMMS Instruction
9.6.4. Mixing MMX and x87 FPU Instructions
9.6.5. Interfacingwith MMX Code
9.6.6. Using MMX Code in a Multitasking Operating System Environment
9.6.7. Exception Handlingin MMX Code.
9.6.8. Register Mapping.o
9.6.9. Effect of Instruction Prefixes on MMX Instructions
CHAPTER 10
PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS (SSE)
10.1. OVERVIEWOF THESSEEXTENSIONS
10.2. SSE PROGRAMMING ENVIRONMENT v,
10.2.1. XMMRegisters
10.2.2. MXCSR Control and Status Register.
10.2.2.1. SIMD Floating-Point Mask and Flag Bits
10.2.2.2. SIMD Floating-Point Rounding Control Field
10.2.2.3. Flush-To-Zero.
10.2.2.4. Denormals Are Zeros
10.2.3. Compatibility of the SSE Extensions with the SSE2 Extensions,
MMX Technology, and x87 FPU Programming Environments
10.3. SSE DATA TYPES. ...
10.4. SSEINSTRUCTION SET.t
10.4.1. SSE Packed and Scalar Floating-Point Instructions
10.4.1.1. SSE Data Movement Instructions.
10.4.1.2. SSE Arithmetic Instructions L.
10.4.2. SSE Logical Instructions
10.4.2.1. SSE Comparison Instructions.
10.4.2.2. SSE Shuffle and Unpack Instructions.
10.4.3. SSE Conversion Instructions. o
10.4.4. SSE 64-bit SIMD Integer Instructions
10.4.5. MXCSR State Management Instructions.
10.4.6. Cacheability Control, Prefetch, and Memory Ordering Instructions. . .
10.4.6.1. Cacheability Control Instructions
10.4.6.2. Caching of Temporal Vs. Non-TemporalData

CONTENTS

CONTENTS |nte| ®

PAGE

10.4.6.3. PREFETCHh Instructions. e 10-18
10.4.6.4. SFENCE Instruction 10-18
10.5. FXSAVE AND FXRSTOR INSTRUCTIONS i, 10-19
10.6. HANDLING SSE INSTRUCTION EXCEPTIONS.t 10-19
10.7. WRITING APPLICATIONS WITH THE SSE EXTENSIONS 10-20
CHAPTER 11
PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 (SSE2)
11.1. OVERVIEWOF THE SSE2EXTENSIONS i 11-1
11.2. SSE2 PROGRAMMING ENVIRONMENT 11-3
11.2.1. Compatibility of the SSE2 Extensions with the SSE, MMX Technology,

and x87 FPU Programming Environments 11-4
11.2.2. Denormals-Are-Zeros Flago 11-4
11.3. SSE2 DATA TYPES. . .. 11-4
11.4. SSE2INSTRUCTIONS e 11-6
11.41 Packed and Scalar Double-Precision Floating-Point Instructions 11-6
11.4.11 Data Movement Instructions. 11-7
11.4.1.2 SSE2 Arithmetic Instructions 11-8
11.4.1.3. SSE2 Logical Instructions. 11-9
11.4.1.4. SSE2 Comparison Instructions.t 11-10
11.4.1.5 SSE2 Shuffle and Unpack Instructions. oL, 11-10
11.4.1.6 SSE2 Conversion Instructions i 11-12
11.4.2. SSE2 64-Bit and 128-Bit SIMD Integer Instructions 11-15
11.4.3. 128-Bit SIMD Integer Instruction Extensions. 11-16
11.4.4. Cacheability Control and Memory Ordering Instructions. 11-17
11.4.4.1. FLUSH Cache Line.o e 11-17
11.4.4.2. Cacheability Control Instructions 11-17
11.4.4.3. Memory Ordering INstructions 11-17
11.4.4.4. PaUSE . . o 11-18
11.4.5. Branch Hints 11-18
11.5. SSEAND SSE2 EXCEPTIONS e 11-18
11.5.1. SIMD Floating-Point Exceptions i 11-19
11.5.2. SIMD Floating-Point Exception Conditions 11-19
11.5.2.1. Invalid Operation Exception (#1) i 11-20
11.5.2.2. Denormal Operand Exception (#D) 11-21
11.5.2.8. Divide-By-Zero Exception (#Z) oot 11-21
11.5.2.4. Numeric Overflow Exception (#O) 11-22
11.5.2.5. Numeric Underflow Exception (#U) 11-22
11.5.2.6. Inexact-Result (Precision) Exception (#P) 11-22
11.5.3. Generating SIMD Floating-Point Exceptions. 11-23
11.5.3.1. Handling Masked Exceptions i 11-23
11.5.3.2. Handling Unmasked Exceptions. 11-24
11.5.3.3. Handling Combinations of Masked and Unmasked Exceptions. 11-25
11.5.4. Handling SIMD Floating-Point Exceptions in Software 11-25
11.5.5. Interaction of SIMD and x87 FPU Floating-Point Exceptions 11-25
11.6. WRITING APPLICATIONS WITH THE SSE AND SSE2 EXTENSIONS. 11-26
11.6.1. General Guidelines for Using the SSE and SSE2 Extensions 11-27
11.6.2. Checking for SSE and SSE2 Support 11-27
11.6.3. Checking for the DAZ Flag in the MXCSR Register 11-28
11.6.4. Initialization of the SSE and SSE2 Extensions 11-28
11.6.5. Saving and Restoring the SSEand SSE2 State 11-29
11.6.6. Guidelines for Writing to the MXCSR Register 11-30

|nte| . CONTENTS

PAGE

11.6.7. Interaction of SSE and SSE2 Instructions with x87 FPU and MMX

INStructions 11-31
11.6.8. Compatibility of SIMD and x87 FPU Floating-Point Data Types 11-31
11.6.9. Intermixing Packed and Scalar Floating-Point and 128-Bit SIMD

Integer Instructionsand Data. 11-32
11.6.10 Interfacing with SSE and SSE2 Procedures and Functions 11-33
11.6.10.1. Passing Parameters in XMM Registers 11-33
11.6.10.2. Saving XMM Register State on a Procedure or FunctionCall 11-33
11.6.10.3. Caller-Save Requirement for Procedure and FunctionCalls 11-34
11.6.11 Updating Existing MMX Technology Routines Using 128-Bit SIMD

Integer INStructions e 11-34
11.6.12. Branching on Arithmetic Operations 11-35
11.6.13. Cacheability Hint Instructions 11-35
11.6.14. Effect of Instruction Prefixes on the SSE and SSE2 Instructions 11-36
CHAPTER 12
INPUT/OUTPUT
12.1. I/OPORT ADDRESSINGo e 12-1
12.2. I/OPORT HARDWARE e e 12-1
12.3. I/OADDRESS SPACE 12-2
12.3.1. Memory-Mapped 1/O 12-2
124, /OINSTRUCTIONS. . . . e e 12-3
12.5. PROTECTED-MODE /Oo e 12-4
12.5.1. /O Privilege Levelo e 12-4
12.5.2. /O Permission BitMap 12-5
12.6. ORDERING /O . .. o 12-6
CHAPTER 13
PROCESSOR IDENTIFICATION AND FEATURE DETERMINATION
13.1. PROCESSOR IDENTIFICATION.ot 13-1
13.2. IDENTIFICATION OF EARLIER IA-32 PROCESSORS. 13-6
APPENDIX A
EFLAGS CROSS-REFERENCE
APPENDIX B
EFLAGS CONDITION CODES
APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY
C.1. X87 FPU INSTRUCTIONS o e e e C-2
c.2. SSE INSTRUCTIONS ... e e e C-4
C.3. SSE2 INSTRUCTIONS . .. e C-6
APPENDIX D

GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
D.1. ORIGIN OF THE MS-DOS COMPATIBILITY MODE FOR HANDLING
X87 FPU EXCEPTIONS. e D-2
D.2. IMPLEMENTATION OF THE MS-DOS COMPATIBILITY MODE IN THE
INTEL486, PENTIUM, AND P6 PROCESSOR FAMILY, AND PENTIUM 4
PROCESSORS D-3

Xi

CONTENTS |nte| ®

PAGE
D.2.1 MS-DOS Compatibility Mode in the Intel486 and Pentium Processors. D-3
D.2.1.1 Basic Rules: When FERR# Is Generated. D-4
D.2.1.2. Recommended External Hardware to Support the
MS-DOS Compatibility Mode D-5
D.2.1.8. No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window. D-7
D.2.2. MS-DOS Compatibility Mode in the P6 Family and
Pentium 4 ProCessors oottt e D-9
D.3. RECOMMENDED PROTOCOL FOR MS-DOS* COMPATIBILITY HANDLERS. . D-10
D.3.1. Floating-Point Exceptions and Their Defaults. D-11
D.3.2. Two Options for Handling Numeric Exceptions. D-11
D.3.2.1. Automatic Exception Handling: Using Masked Exceptions D-11
D.3.2.2. Software ExceptionHandling i D-13
D.3.3. Synchronization Required for Use of x87 FPU Exception Handlers D-14
D.3.3.1. Exception Synchronization: What, Why and When D-14
D.3.3.2. Exception Synchronization Examples. D-15
D.3.3.3. Proper Exception Synchronizationin General D-16
D.3.4. x87 FPU Exception Handling Examples D-17
D.3.5. Need for Storing State of IGNNE# Circuit If Using x87 FPU and SMM. D-21
D.3.6. Considerations When x87 FPU Shared Between Tasks. D-22
D.3.6.1. Speculatively Deferring x87 FPU Saves, General Overview D-22
D.3.6.2. Tracking x87 FPU Ownership. e D-23
D.3.6.3. Interaction of x87 FPU State Saves and Floating-Point Exception
ASSOCIatioN D-24
D.3.6.4. Interrupt Routing Fromthe Kernel D-26
D.3.6.5. Special Considerations for Operating Systems that Support
Streaming SIMD EXtENSIONS.ot D-27
D.4. DIFFERENCES FOR HANDLERS USING NATIVEMODE. D-27
D.4.1. Origin with the Intel 286 and Intel 287, and Intel386 and Intel 387
PrOCESSOrS. o D-28
D.4.2. Changes with Intel486, Pentium and Pentium Pro Processors with
CRONE=T . o D-28
D.4.3. Considerations When x87 FPU Shared Between Tasks Using Native Mode . . D-29
APPENDIX E
GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION HANDLERS
E.1. TWO OPTIONS FOR HANDLING FLOATING-POINT EXCEPTIONS E-1
E.2. SOFTWARE EXCEPTION HANDLINGo E-1
E.3. EXCEPTION SYNCHRONIZATION. . . . oot e E-3
E.4. SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE STANDARD 754 FOR
BINARY FLOATING-POINT ARITHMETICo E-4
E.4.1. Floating-Point Emulation. E-4
E.4.2. SSE and SSE2 Response To Floating-Point Exceptions E-6
E4.21. Numeric EXCeptionsot E-7
E4.22. Results of Operations with NaN Operands or a NaN Result for SSE
and SSE2 Numeric Instructionst E-7
E.4.2.3. Condition Codes, Exception Flags, and Response for Masked and
Unmasked Numeric Exceptions i E-10
E.4.3. SIMD Floating-Point Emulation Implementation Example. E-13

Xii

intel.

Figure 1-1.
Figure 2-1.

Figure 2-2.
Figure 2-3.

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 4-1.
Figure 4-2.

Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 5-1.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.

Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.
Figure 6-10.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 7-4.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.
Figure 7-9.
Figure 7-10.

FIGURES

PAGE
Bitand Byte Order 1-4
The P6 Processor Micro-Architecture with Advanced Transfer
Cache Enhancement 2-7
The Intel NetBurst Micro-Architecture. 2-11
Comparison of an IA-32 Processor with Hyper-Threading
Technology and a Traditional Dual Processor System. 2-13
IA-32 Basic Execution Environment. L 3-3
Three Memory ManagementModels 3-6
General System and Application Programming Registers 3-9
Alternate General-Purpose RegisterNames 3-10
Use of Segment Registers for Flat Memory Model. 3-11
Use of Segment Registers in Segmented Memory Model 3-11
EFLAGS Register.o 3-13
Memory Operand Addressottt 3-19
Offset (or Effective Address) Computation. 3-21
Fundamental Data Types oot e 4-1
Bytes, Words, Doublewords, Quadwords, and Double Quadwords
N MEmMOrY . . . 4-2
Numeric Data Types.o e 4-3
Pointer Data Types.ot 4-7
Bit Field Data Type.ot e 4-7
64-Bit Packed SIMD Data Typest 4-8
128-Bit Packed SIMD Data Typeso it e e 4-9
BCD Data TYPeS. . . vttt ettt e e 4-10
Binary Real Number System 4-13
Binary Floating-Point Format 4-13
Real NumbersandNaNs i 4-15
SIMD Extensions, Register Layouts, and Data Types 5-14
Stack Structure 6-2
StackonNearand FarCalls. i 6-6
Protection RiNgs oo e 6-8
Stack Switch on a Call to a Different Privilege Level 6-9
Stack Usage on Transfers to Interrupt and Exception Handling
RoUtiNeSo 6-13
Nested Procedures.ot 6-19
Stack Frame after Entering the MAIN Procedure. 6-20
Stack Frame after Entering Procedure A 6-20
Stack Frame after Entering Procedure B 6-21
Stack Frame after Entering Procedure C 6-22
Basic Execution Environment for General-Purpose Instructions 7-2
Operation of the PUSH Instruction. 7-6
Operation of the PUSHA Instruction. 7-7
Operation of the POP Instruction i, 7-7
Operation of the POPA Instruction. 7-8
Sign EXtension 7-8
SHL/SAL Instruction Operation. 7-12
SHR Instruction Operation i 7-13
SAR Instruction Operation 7-13
SHLD and SHRD Instruction Operations 7-14

FIGURES

Figure 7-11.
Figure 7-12.

Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 8-5.
Figure 8-6.
Figure 8-7.
Figure 8-8.
Figure 8-9.
Figure 8-10.
Figure 8-11.
Figure 8-12.
Figure 8-13.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.
Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.
Figure 11-8.
Figure 11-9.
Figure 12-1.
Figure 12-2.
Figure D-1.

Figure D-2.
Figure D-3.
Figure D-4.
Figure D-5.
Figure D-6.
Figure E-1.

Xiv

PAGE
ROL, ROR, RCL, and RCR Instruction Operations 7-15
Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD
INStrUCtioNS o o 7-25
x87 FPU Execution Environment 8-2
x87 FPU Data Register Stack. i 8-3
Example x87 FPU Dot Product Computation. 8-4
x87 FPU Status Word. 8-5
Moving the Condition Codes to the EFLAGS Register. 8-8
x87 FPU Control Word e 8-9
X87 FPU Tag Word. e 8-11
Contents of x87 FPU Opcode Registers. 8-13
Protected Mode x87 FPU State Image in Memory, 32-Bit Format 8-14
Real Mode x87 FPU State Image in Memory, 32-Bit Format............. 8-14
Protected Mode x87 FPU State Image in Memory, 16-Bit Format......... 8-15
Real Mode x87 FPU State Image in Memory, 16-Bit Format............. 8-15
x87 FPU Data Type Formats i 8-16
MMX Technology Execution Environment 9-2
MMX Register Set. 9-3
Data Types Introduced with the MMX Technology. 9-4
SIMD Execution Model. 9-5
SSE Execution Environment. 10-3
XMM Registers 10-4
MXCSR Control/Status Register. i 10-5
128-Bit Packed Single-Precision Floating-Point Data Type 10-7
Packed Single-Precision Floating-Point Operation. 10-9
Scalar Single-Precision Floating-Point Operation. 10-9
SHUFPS Instruction Packed Shuffle Operation. 10-13
UNPCKHPS Instruction High Unpack and Interleave Operation 10-14
UNPCKLPS Instruction Low Unpack and Interleave Operation.......... 10-14
Steaming SIMD Extensions 2 Execution Environment. 11-3
Data Types Introduced with the SSE2 Extensions. 11-5
Packed Double-Precision Floating-Point Operations 11-7
Scalar Double-Precision Floating-Point Operations 11-7
SHUFPD Instruction Packed Shuffle Operation. 11-11
UNPCKHPD Instruction High Unpack and Interleave Operation 11-12
UNPCKLPD Instruction Low Unpack and Interleave Operation. 11-12
SSE and SSE2 Conversion Instructions. 11-13
Example Masked Response for Packed Operations 11-24
Memory-Mapped 1/O. 12-3
I/O Permission BitMap. 12-5
Recommended Circuit for MS-DOS* Compatibility x87 FPU
Exception Handling. D-6
Behavior of Signals During x87 FPU Exception Handling D-7
Timing of Receipt of External Interrupt. D-8
Arithmetic Example Using Infinity i D-12
General Program Flow for DNA ExceptionHandler D-25
Program Flow for a Numeric Exception Dispatch Routine D-25
Control Flow for Handling Unmasked Floating-Point Exceptions. E-6

intel.

Table 2-1.
Table 2-2.
Table 3-1.
Table 3-2.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10.
Table 4-11.
Table 5-1.
Table 6-1.
Table 7-1.
Table 7-2.
Table 7-3.
Table 7-4.
Table 8-1.
Table 8-2.
Table 8-3.

Table 8-4.
Table 8-5.
Table 8-6.

Table 8-7.

Table 8-8.
Table 8-9.
Table 8-10.
Table 8-11.
Table 9-1.
Table 9-2.
Table 9-3.
Table 10-1.
Table 11-1.

Table 11-2.
Table 11-3.
Table 12-1.
Table 13-1.

Table 13-2.
Table 13-3.
Table 13-4.

TABLES

PAGE
Key Features of Most Recent IA-32 Processors.coov.n. 2-15
Key Features of Previous Generations of IA-32 Processors 2-16
Effective Operand- and Address-Size Attributes 3-17
Default Segment Selection Rules. 3-19
Signed Integer Encodings. 4-4
Length, Precision, and Range of Floating-Point Data Types 4-5
Floating-Point Number and NaN Encodings. 4-6
Packed Decimal Integer Encodings i 4-11
Real and Floating-Point Number Notation 4-14
Denormalization Process 4-16
RulesforHandlingNaNs i, 4-18
Rounding Modes and Encoding of Rounding Control (RC) Field.......... 4-20
Numeric Overflow Thresholds 4-24
Masked Responses to Numeric Overflow. 4-25
Numeric Underflow (Normalized) Thresholds. 4-25
Instruction Groups and [A-32 Processors.covii e .. 5-1
Exceptions and Interrupts. 6-12
Move Instruction Operations. 7-4
Conditional Move Instructions. i 7-5
Bit Test and Modify Instructions i 7-16
Conditional Jump Instructions. 7-19
Condition Code Interpretation. i 8-7
Precision Control Field (PC). e 8-10
Unsupported Double Extended-Precision Floating-Point Encodings
and Pseudo-Denormals e 8-18
Data Transfer Instructions i 8-20
Floating-Point Conditional Move Instructions 8-21
Setting of x87 FPU Condition Code Flags for Floating-Point Number
COMPAISONS. . . .ttt e e 8-24
Setting of EFLAGS Status Flags for Floating-Point Number
COMPANISONS. . . . ottt et e e e 8-24
TEST Instruction Constants for Conditional Branching 8-25
Arithmetic and Non-arithmetic Instructions. 8-31
Invalid Arithmetic Operations and the Masked Responses to Them 8-34
Divide-By-Zero Conditions and the Masked Responsesto Them 8-36
Data Range Limits for Saturation i 9-6
MMX Instruction Set Summary. ... 9-7
Effect of Prefixes on MMX Instructions. 9-14
PREFETCHh Instructions CachingHints 10-19
Masked Responses of SSE and SSE2 Instructions to Invalid
Arithmetic Operations 11-20
SSE and SSE2 State Following a Power-up/Reset or INIT 11-29
Effect of Prefixes on SSE and SSE2 Instructions. 11-37
I/O Instruction Serialization. 12-7
Highest CPUID Source Operand for I1A-32 Processors and
Processor Families. 13-2
Information Returned by CPUID Instruction. 13-2
Extended Feature Flags Returned in ECX Register. 13-4
Feature Flags Returned in EDX Register. 13-4

TABLES

Table A-1.
Table B-1.
Table C-1.
Table C-2.
Table C-3.
Table C-4.
Table E-1.
Table E-2.
Table E-3.
Table E-4.
Table E-5.
Table E-6.
Table E-7.
Table E-8.
Table E-9.
Table E-10.
Table E-11.
Table E-12.
Table E-13.
Table E-14.
Table E-15.
Table E-16.

XVi

PAGE
EFLAGS Cross-Reference A-1
EFLAGS Condition Codeso vt e B-1
x87 FPU and SIMD Floating-Point Exceptions. C-1
Exceptions Generated With x87 FPU Floating-Point Instructions C-2
Exceptions Generated With the SSE Instructions C-4
Exceptions Generated With the SSE2 Instructions C-6
ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS E-8
CMPPS.EQ, CMPSS.EQ, CMPPS.ORD,CMPSS.ORD E-8
CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD. E-8
CMPPS.LT, CMPSS.LT, CMPPS.LE,CMPSS.LE E-8
CMPPS.NLT, CMPSS.NLT, CMPSS.NLT, CMPSS.NLE. E-8
COMISS . . E-9
UCOMISS . . . E-9
CVTPS2PI, CVTSS2SI, CVTTPS2PI, CVTTSS2SIo E-9
MAXPS, MAXSS, MINPS, MINSS i E-9
SQRTPS, SQRTSS . ..o E-9
#1-Invalid Operations. E-10
#Z - Divide-by-Zero. E-11
#D -Denormal Operand ottt E-12
#O - NumericOverflow. E-12
#U -NumericUnderflow E-13
#P - Inexact Result (Precision) E-13

1

About This Manual

Intelo ABOUT THIS MANUAL

CHAPTER 1
ABOUT THIS MANUAL

The IA-32 Intel® Architecture Software Developer’s Manual, Volume 1: Basic Architecture
(Order Number 245470) is part of a three-volume set that describes the architecture and
programming environment of all IA-32 Intel® Architecture processors. The other two volumes
in this set are:

® The IA-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set
Reference (Order Number 245471).

® The [A-32 Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide (Order Number 245472).

The IA-32 Intel Architecture Software Developer’s Manual, Volume 1, describes the basic archi-
tecture and programming environment of an IA-32 processor; the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 2, describes the instruction set of the processor and the
opcode structure. These two volumes are aimed at application programmers who are writing
programs to run under existing operating systems or executives. The IA-32 Intel Architecture
Software Developer’s Manual, Volume 3 describes the operating-system support environment
of an IA-32 processor, including memory management, protection, task management, interrupt
and exception handling, and system management mode. It also provides IA-32 processor
compatibility information. This volume is aimed at operating-system and BIOS designers and
programmers.

1.1. 1A-32 PROCESSORS COVERED IN THIS MANUAL

This manual includes information pertaining primarily to the most recent IA-32 processors,
which include: the Pentium® processors, the P6 family processors, the Pentium 4 processors,
the Pentium M processors, and the Intel® Xeon™ processors. The P6 family processors are
those 1A-32 processors based on the P6 family micro-architecture, which include the Pentium
Pro, Pentium II, and Pentium Il processors. The Pentium 4 and Intel Xeon processors are based
on the Intel® NetBurst™ micro-architecture.

1-1

ABOUT THIS MANUAL Inu®

1.2. OVERVIEW OF THE /A-32 INTEL ARCHITECTURE
SOFTWARE DEVELOPER’S MANUAL, VOLUME 1: BASIC
ARCHITECTURE

The contents of this manual are as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the IA-32 Intel
Architecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Introduction to the IA-32 Architecture. Introduces the IA-32 architecture and
the families of Intel processors that are based on this architecture. It also gives an overview of
the common features found in these processors and brief history of the [A-32 architecture.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization
and describes the register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the
processor; provides an overview of real numbers and floating-point formats and of floating-
point exceptions.

Chapter 5 — Instruction Set Summary. Lists the all the IA-32 architecture instructions,
divided into technology groups (general-purpose, x87 FPU, MMX™ technology, Streaming
SIMD Extensions (SSE), Streaming SIMD Extensions 2 (SSE2), and system instructions).
Within these groups, the instructions are presented in functionally related groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack
and the mechanisms provided for making procedure calls and for servicing interrupts and
exceptions.

Chapter 7 — Programming With the General-Purpose Instructions. Describes the basic
load and store, program control, arithmetic, and string instructions that operate on basic data
types and on the general-purpose and segment registers; describes the system instructions that
are executed in protected mode.

Chapter 8 — Programming With the x87 Floating Point Unit. Describes the x87 floating-
point unit (FPU), including the floating-point registers and data types; gives an overview of the
floating-point instruction set; and describes the processor’s floating-point exception conditions.

Chapter 9 — Programming with Intel MMX Technology. Describes the Intel MMX tech-
nology, including MMX registers and data types, and gives an overview of the MMX instruction
set.

Chapter 10 — Programming with Streaming SIMD Extensions (SSE). Describes the SSE
extensions, including the XMM registers, the MXCSR register, and the packed single-precision
floating-point data types; gives an overview of the SSE instruction set; and gives guidelines for
writing code that accesses the SSE extensions.

1-2

Intelc ABOUT THIS MANUAL

Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2). Describes the
SSE2 extensions, including XMM registers and the packed double-precision floating-point data
types; gives an overview of the SSE2 instruction set; and gives guidelines for writing code that
accesses the SSE2 extensions. This chapter also describes the SIMD floating-point exceptions
that can be generated with SSE and SSE2 instructions, and it gives general guidelines for incor-
porating support for the SSE and SSE2 extensions into operating system and applications code.

Chapter 12 — Input/Qutput. Describes the processor’s I/O mechanism, including I/O port
addressing, the I/O instructions, and the I/O protection mechanism.

Chapter 13 — Processor Identification and Feature Determination. Describes how to deter-
mine the CPU type and the features that are available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the
flags in the EFLAGS register.

Appendix B— EFLAGS Condition Codes. Summarizes how the conditional jump, move, and
byte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in
the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes the exceptions that can be
raised by the x87 FPU floating-point and the SSE and SSE2 SIMD floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to
design and write MS-DOS* compatible exception handling facilities for FPU exceptions,
including both software and hardware requirements and assembly-language code examples.
This appendix also describes general techniques for writing robust FPU exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives
guidelines for writing exception handlers to handle exceptions generated by the SSE and SSE2
SIMD floating-point instructions.

1.3. NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal and binary numbers. A review of this notation makes the
manual easier to read.

1.3.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. [A-32 proces-
sors are “little endian” machines; this means the bytes of a word are numbered starting from the
least significant byte. Figure 1-1 illustrates these conventions.

ABOUT THIS MANUAL Inu®

) Data Structure
sanest 31 2423 1615 8 7 0 <«— Bit offset
28
24
20
16
12
8
4
Byte 3 Byte 2 Byte 1 Byte0 | O

A

Byte Offset

Lowest
Address

Figure 1-1. Bit and Byte Order

1.3.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of registers which

contain such bits. Mask out the reserved bits before testing.
Do not depend on the states of any reserved bits when storing to memory or to a register.
Do not depend on the ability to retain information written into any reserved bits.

When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in [A-32
registers. Depending upon the values of reserved register bits will make
software dependent upon the unspecified manner in which the processor
handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.

1-4

Intelo ABOUT THIS MANUAL

1.3.3. Instruction Operands

When instructions are represented symbolically, a subset of the IA-32 assembly language is
used. In this subset, an instruction has the following format,

label: mnemonic argument1, argument2, argument3
where:
® Alabel is an identifier which is followed by a colon.

® A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

® The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.3.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F.

Base 2 (binary) numbers are represented by a string of 1s and Os, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.3.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes memory. The range of memory that can be addressed is called an
address space.

ABOUT THIS MANUAL InU®

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register: Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.
CS:EIP

1.3.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF (fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP (0)

See Chapter 5, Interrupt and Exception Handling, in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for a list of exception mnemonics and their descriptions.

1.4. RELATED LITERATURE

Literature related to IA-32 processors is listed on-line at the following Intel web site:
http://developer.intel.com/design/processors/

Some of the documents listed at this web site can be viewed on-line; others can be ordered on-
line. The literature available is listed by Intel processor and then by the following literature
types: applications notes, data sheets, manuals, papers, and specification updates. The following
literature may be of interest:

® Data Sheet for a particular Intel IA-32 processor.

® Specification Update for a particular Intel IA-32 processor.

1-6

Intelo ABOUT THIS MANUAL

® AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618.

® AP-578, Software and Hardware Considerations for FPU Exception Handlers for Intel
Architecture Processors, Order Number 243291.

® Intel® Pentium® 4 and Intel® Xeon™ Processor Optimization Reference Manual, Order
Number 248966.

ABOUT THIS MANUAL

1-8

2

Introduction to the
IA-32 Architecture

CHAPTER 2
INTRODUCTION TO THE 1A-32
INTEL ARCHITECTURE

The exponential growth of computing power and personal computer ownership made the
computer one of the most important forces that shaped business and society in the second half
of the twentieth century. Computers are expected to continue to play crucial roles in the growth
of technology, business, and new arenas.

The IA-32 Intel Architecture has been at the forefront of the computer revolution and is today
the preferred computer architecture, as measured by the computers in use and total computing
power available in the world. The two major factors that drive the popularity of IA-32 architec-
ture are: (1) software compatibility (2) and the fact that each generation of IA-32 processors
delivers significantly higher performance.

This chapter provides a brief historical summary of the IA-32 architecture, from the Intel 8086
processor to the latest version implemented in the Pentium 4 and Intel Xeon processors.

2.1. BRIEF HISTORY OF THE IA-32 ARCHITECTURE

One of the most important achievements of the IA-32 architecture is that object code created for
processors released in 1978 still executes on the latest processors in the IA-32 architecture
family.

2.1.1. The First Microprocessors

The [A-32 architecture can be traced to Intel 8085 and 8080 microprocessors and to the Intel
4004 microprocessor (the first microprocessor, designed by Intel in 1969). The IA-32 architec-
ture family was preceded by 16-bit processors which include the 8086 and the 8088 processors.

The 8086 has 16-bit registers and a 16-bit external data bus, with 20-bit addressing giving a
1-MByte address space. The 8088 is similar to the 8086 except it has an 8-bit external data bus.
These processors introduced segmentation to the IA-32 architecture. With segmentation, a 16-
bit segment register contains a pointer to a memory segment of up to 64 KBytes. Using four
segment registers at a time, the 8086/8088 processors are able to address up to 256 KBytes
without switching between segments. The 20-bit addresses that can be formed using a segment
register and an additional 16-bit pointer provide a total address range of 1 MByte.

INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE Intel®

2.1.2. Introduction of Protected Mode Operation

The Intel 286 processor introduced protected mode operation into the IA-32 architecture.
Protected mode uses the segment register contents as selectors or pointers into descriptor tables.
Descriptors provide 24-bit base addresses, maximum physical memory size of up to 16 MBytes,
support for virtual memory management on a segment swapping basis, and various protection
mechanisms. The protection mechanisms include: segment limit checking, read-only and
execute-only segment options, and up to four privilege levels to protect operating system code
(in several subdivisions, if desired) from application or user programs. In addition, hardware
task switching and local descriptor tables allow the operating system to protect application or
user programs from each other.

2.1.3. Advent of 32-bit Processors

The Intel386 processor was the first 32-bit processor in the IA-32 architecture family. In 1985,
it introduced 32-bit registers for use both to hold operands and for addressing. The lower half of
each 32-bit Intel386 register retains the properties of the 16-bit registers of earlier generations.
This permits complete backward compatibility. The processor also provides a virtual-8086
mode that allows for greater efficiency when executing programs created for the 8086 and 8088
processors.

The Intel386 processor has a 32-bit address bus and supports up to 4GBytes of physical memory.
Logical address space is provided for each software process. The 32-bit architecture supports
both a segmented-memory model and a flat! memory model. In the flat memory model, segment
registers point to the same address. All 4GBytes of addressable space within each segment are
accessible.

Earlier 16-bit instructions were enhanced with new Intel386 32-bit operands and addressing
forms. The processor also introduced paging, with the fixed 4 KByte page size providing a
method for virtual memory management that is superior to using segments for this purpose.

Intel386 processor was the first to include a number of parallel stages. The six stages are: the
bus interface unit (accesses memory and I/O for the other units), the code prefetch unit (receives
object code from the bus unit and puts it into a 16-byte queue), the instruction decode unit
(decodes object code from the prefetch unit into microcode), the execution unit (executes the
microcode instructions), the segment unit (translates logical addresses to linear addresses and
does protection checks), and the paging unit (translates linear addresses to physical addresses,
does page based protection checks, and contains a cache with information for up to 32 most
recently accessed pages).

2.1.4. The Intel486™ Processor

The Intel486™ processor, introduced in 1989, added additional parallel execution capability by
expanding the Intel386 processor’s instruction decode and execution units into five pipelined
stages. Each each stage operates in parallel with the others on up to five instructions in different

1. Requires only one 32-bit address component to access anywhere in the linear address space.

2-2

Intel e INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE

stages of execution. Each stage can do its work on one instruction in one clock, so the Intel486
processor can execute as rapidly as one instruction per clock cycle.

An 8-KByte on-chip first-level cache was added to the Intel486 processor to greatly increase the
percent of instructions that could execute at the scalar rate of one per clock. Memory access
instructions are included if the operand is in the first-level cache.

The Intel486 processor also added an integrated x87 FPU.

Subsequent generations of the Intel486 processor incorporated new power saving and system
management capabilities. These features were initially developed for processors targeted at the
notebook PC market (the Intel386 SL and Intel486 SL processors). They include: System
Management Mode (triggered by a dedicated interrupt pin), the Stop Clock, and Auto Halt
Powerdown.

2.1.5. The Intel® Pentium® Processor

The introduction of the Intel Pentium processor in 1993 added a second execution pipeline to
achieve superscalar performance (two pipelines, known as u and v, together can execute two
instructions per clock). The on-chip first-level cache doubled, with 8 KBytes devoted to code and
another 8 KBytes devoted to data. The data cache uses the MESI protocol to support the more
efficient write-back cache in addition to the write-through cache previously used by the Intel486
processor. Branch prediction with an on-chip branch table was added to increase performance
in looping constructs.

Extensions were added to make the virtual-8086 mode more efficient and to allow for 4-MByte
as well as 4-KByte pages. The processor registers are still 32 bits, but internal data paths of 128
and 256 bits add speed to internal data transfers. The burstable external data bus was increased
to 64 bits. An Advanced Programmable Interrupt Controller (APIC) was added to support
systems with multiple Pentium processors. New pins and a special mode (dual processing) were
designed in to support glueless two processor systems.

A subsequent stepping of the Pentium family introduced Intel MMX Technology (the Pentium
Processor with MMX technology). Intel MMX technology uses the single-instruction, multiple-
data (SIMD) execution model to perform parallel computations on packed integer data
contained in 64-bit MMX registers. This technology greatly enhanced the performance in
advanced media, image processing, and data compression applications.

2.1.6. The P6 Family of Processors

Intel introduced the P6 family of processors in 1995. This processor family was based on a
superscalar micro-architecture that set new performance standards. One of the goals in the
design of the P6 family micro-architecture was to exceed the performance of the Pentium
processor significantly while using the same 0.6-micrometer, four-layer, metal BICMOS manu-
facturing process. This meant that performance gains could only be achieved through substantial
advances in the micro-architecture.

INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE Intel®

The Intel Pentium Pro processor was the first processor based on the P6 micro-architecture.
Subsequent members of the P6 processor family include: the Intel Pentium II, Intel Pentium®
II Xeon™, Intel Celeron®, Intel Pentium 11, and Intel Pentium® 11l Xeon™ processors.

The Pentium Pro processor is three-way superscalar. By using parallel processing techniques,
the processor is able on average to decode, dispatch, and complete execution of (retire) three
instructions per clock cycle. The processor also introduced the dynamic execution (the micro-
data flow analysis, out-of-order execution, superior branch prediction, and speculative execu-
tion) in a superscalar implementation. Three instruction decode units work in parallel to decode
object code into smaller operations called micro-ops (micro-architecture op-codes). These
micro-ops are fed into an instruction pool and (when interdependencies permit) can be executed
out of order by the five parallel execution units (two integer, two FPU and one memory interface
unit). The Retirement Unit retires completed micro-ops in their original program order, taking
branches into account.

The Pentium Pro processor was further enhanced by its caches. It has the same two on-chip

8 KByte 1st-Level caches as the Pentium processor and an additional 256 KByte 2nd-Level
cache in the same package as the processor. The 256 KByte 2nd-Level cache uses a dedicated
64-bit backside (cache-bus) full clock speed bus. The 1st-Level cache is dual-ported, the 2nd-
Level cache supports up to 4 concurrent accesses. The 64-bit external data bus is transaction-
oriented, meaning that each access is handled as a separate request and response with numerous
requests allowed while awaiting a response.

The Pentium Pro processor’s expanded 36-bit address bus gives a maximum physical address
space of 64GBytes.

The Intel Pentium II processor added Intel MMX Technology to the P6 family processors along
with new packaging and several hardware enhancements. The processor core is packaged in the
single edge contact cartridge (SECC), enabling ease of design and flexible motherboard archi-
tecture. The Ist-Level data and instruction caches were enlarged to 16 KBytes each, and 2nd-
Level cache sizes of 256 KBytes, 512 KBytes, and 1 MByte are supported. A half-clock speed
backside bus connects the 2nd-Level cache to the processor. Multiple low-power states such as
AutoHALT, Stop-Grant, Sleep, and Deep Sleep are supported to conserve power when idling.

The Pentium II Xeon processor combined premium characteristics of previous generations of
Intel processors. This includes: 4-way, 8-way (and up) scalability and a 2 MByte 2nd-Level
cache running on a full-clock speed backside bus.

The Intel Celeron processor family focused the IA-32 architecture on the desktop or value PC
market segment. It offers an integrated 128 KByte of Level 2 cache and a plastic pin grid array
(P.P.G.A.) form factor to lower system design cost.

The Pentium Il processor introduced the Streaming SIMD Extensions (SSE) to the IA-32 archi-
tecture. SSE extensions expand the SIMD execution model introduced with the Intel MMX
technology by providing a new set of 128-bit registers and the ability to perform SIMD opera-
tions on packed single-precision floating-point values.

The Pentium Il Xeon processor extended the performance levels of the TA-32 processors with
the enhancement of a full-speed, on-die, and Advanced Transfer Cache.

2-4

Intel e INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE

2.1.7. The Intel Pentium 4 Processor

In 2000, the Intel Pentium 4 processor introduced the Intel NetBurst micro-architecture. The
Intel NetBurst micro-architecture allows processors to operate at significantly higher clock
speeds and performance levels than previous IA-32 processors.

The processor has the following features:

® Intel NetBurst micro-architecture (see Section 2.2.3., The Intel NetBurst Micro-Archi-
tecture for a detailed description)

— Rapid Execution Engine

— Hyper Pipelined Technology

— Advanced Dynamic Execution

— Innovative new cache subsystem
® Streaming SIMD Extensions 2 (SSE2)

— Extends the Intel MMX Technology and the SSE extensions with 144 new instruc-
tions; these include support for:

® 128-bit SIMD integer arithmetic operations

® 128-bit SIMD double precision floating point operations

® (Cache and memory management operations
— Enhances and accelerates video, speech, encryption, image and photo processing

® A 400 MHz Intel NetBurst micro-architecture system bus; this includes:

— 3.2 GBytes per second throughput (3 times faster than the Pentium Il processor)
— Quad-pumped 100 MHz scalable bus clock achieves 400 MHz effective speed
— Split-transaction, pipelined
— 64-byte line size with 128-byte accesses
— Support for higher data throughput with higher bus clock

® Support for Hyper-Threading Technology (see Section 2.2.4., Hyper-Threading
Technology)

® Compatible with applications and operating systems written to run on Intel IA-32 archi-
tecture processors

2.1.8. The Intel® Xeon™ Processor

The Intel Xeon processor is based on the Intel NetBurst micro-architecture (see Section 2.2.3.,
The Intel NetBurst Micro-Architecture). This family of IA-32 processors is designed for use in
server systems and high-performance workstations. The Intel Xeon processor has the same

INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE Intel®

advanced features as the Pentium 4 processor (see Section 2.1.7., The Intel Pentium 4
Processor).

2.1.9. The Intel® Pentium® M Processor

The Intel Pentium M processor is a high performance, low power mobile processor with micro-
architectural enhancements over previous generations of Intel mobile processors. The Pentium
M processor includes the following features:

® Supports Intel Architecture with Dynamic Execution

® High performance, low-power core

® On-die, primary 32-kbyte instruction cache and 32-kbyte write-back data cache

® On-die, 1-MByte second level cache with Advanced Transfer Cache Architecture

® Advanced Branch Prediction and Data Prefetch Logic

® Streaming SIMD Extensions 2 (SSE2)

® 400 MHz, Source-Synchronous Processor System Bus

® Advanced Power Management features including Enhanced Intel® SpeedStep® Technology

The Intel Pentium M processor is manufactured using Intel’s advanced 0.13 micron process
technology with copper interconnect. The processor supports MMX™ Technology, Streaming
SIMD instructions, and the SSE2 instruction set. It is fully compatibility with IA-32 software.

The high performance core features innovations like Micro-op Fusion and Advanced Stack
Management. These reduce the number of pops handled by the processor and this results in
more efficient scheduling and better performance at low power. On-die 32-KB first-level
instruction and data caches and a 1 MByte second-level cache with Advanced Transfer Cache
Architecture deliver significant performance improvements over previous generations of mobile
Intel processors.

The processor also features advanced branch prediction architecture that significantly reduces
the number of mispredicted branches. The processor’s Data Prefetch Logic speculatively fetches
data to the second-level cache before a cache request to the first-level data cache occurs. This
results in reduced bus cycle penalties.

2.2. MORE ON MAJOR TECHNICAL ADVANCES

The following sections provide more information on major additions to the IA-32 architecture.

2-6

Intel e INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE

2.2.1. The P6 Family Micro-architecture

The Pentium Pro processor introduced a new micro-architecture for the Intel IA-32 processors,
commonly referred to as P6 processor microarchitecture. The P6 processor micro-architecture
was later enhanced with an on-die, 2nd-Level cache, called Advanced Transfer Cache.

This micro-architecture is a three-way superscalar, pipelined architecture. Three-way super-
scalar means that using parallel processing techniques, the processor is able on average to
decode, dispatch, and complete execution of (retire) three instructions per clock cycle.

To handle this level of instruction throughput, the P6 processor family uses a decoupled, 12-
stage superpipeline that supports out-of-order instruction execution. Figure 2-1 shows a concep-
tual view of the P6 processor micro-architecture pipeline with the Advanced Transfer Cache
enhancement.

E System Bus a
$ —_— Frequently used
BusUnit | _____ Less frequently used
2nd Level Cache 1st Level Cache
On-die, 8-way 4-way, low latency
N j\
e——-= :
H Front End
w
Execution
Fetch/ Instruction Execution
- Cache > i
Decode ? Microcode 7| Out-of-Order Core) Retirement
ROM
i ! Branch History Update
Lo BTSs/Branch Prediction

Figure 2-1. The P6 Processor Micro-Architecture with Advanced Transfer
Cache Enhancement

To insure a steady supply of instructions and data for the instruction execution pipeline, the P6
processor micro-architecture incorporates two cache levels. The Level 1 cache provides an
8-KByte instruction cache and an 8-KByte data cache, both closely coupled to the pipeline. The

2-7

INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE Intel®

second-level cache provides 256-KByte, 512-KByte, or 1-MByte static RAM that is coupled to
the core processor through a full clock-speed 64-bit cache bus.

The centerpiece of the P6 processor micro-architecture is an out-of-order execution mechanism
called dynamic execution. Dynamic execution incorporates three data-processing concepts:

¢ Deep branch prediction allows the processor to decode instructions beyond branches to
keep the instruction pipeline full. The P6 processor family implements highly optimized
branch prediction algorithm to predict the direction of the instruction.

® Dynamic data flow analysis requires real-time analysis of the flow of data through the
processor to determine dependencies and to detect opportunities for out-of-order
instruction execution. The out-of-order execution core can monitor many instructions and
execute these instructions in the order that best optimizes the use of the processor’s
multiple execution units, while maintaining the data integrity.

® Speculative execution refers to the processor’s ability to execute instructions that lie
beyond a conditional branch that has not yet been resolved, and ultimately to commit the
results in the order of the original instruction stream. To make speculative execution
possible, the P6 processor micro-architecture decouples the dispatch and execution of
instructions from the commitment of results. The processor’s out-of-order execution core
uses data-flow analysis to execute all available instructions in the instruction pool and
store the results in temporary registers. The retirement unit then linearly searches the
instruction pool for completed instructions that no longer have data dependencies with
other instructions or unresolved branch predictions. When completed instructions are
found, the retirement unit commits the results of these instructions to memory and/or the
TA-32 registers (the processor’s eight general-purpose registers and eight x87 FPU data
registers) in the order they were originally issued and retires the instructions from the
instruction pool.

2.2.2. Streaming SIMD Extensions 2 (SSE2) Technology

The Intel Pentium 4 processor introduced the SSE2 extensions. SSE2 extensions offer enhance-
ments to the Intel MMX technology and SSE extensions. The enhancements include operations
on new packed data formats and increased SIMD computational performance using 128-bit
registers for integer SIMD operation. A packed double-precision floating-point data type was
introduced along with several packed 128-bit integer data types. These data types allow packed
double-precision and single-precision floating-point and packed integer computations to be
performed in the XMM registers.

SIMD instructions include floating-point SIMD instructions, integer SIMD instructions,
instructions for conversion between SIMD floating-point data and SIMD integer data, and
instructions for conversion of packed data between XMM registers and MMX registers. The
floating-point SIMD instructions allow computations to be performed on packed double-preci-
sion floating-point values (two double-precision values per XMM register). The computation of
SIMD floating-point instructions, the single-precision and the double-precision floating-point
formats are compatible with IEEE Standard 754 for Binary Floating-Point Arithmetic. New
integer SIMD instructions provide flexible and higher dynamic range computational power by

2-8

Intel @ INTRODUCTION TO THE 1A-32 INTEL ARCHITECTURE

supporting arithmetic operations on packed doubleword and quadword data as well as other
operations on packed byte, word, doubleword, quadword and double quadword data.

In addition to new 128-bit SIMD instructions, there are 128-bit enhancements to 68 integer
SIMD instructions. These operated solely on 64-bit MMX registers in the Pentium II and
Pentium Il processors. Those 64-bit integer SIMD instructions were enhanced to support oper-
ation on 128-bit XMM registers in the Pentium 4 processor. These enhanced integer SIMD
instructions allow software developers to have maximum flexibility by writing SIMD code with
either XMM registers or MMX registers.

The Intel Pentium 4 processor’s features enable software developers to deliver new levels of
performance in multimedia applications ranging from 3-D graphics, video
decoding/encoding, to speech recognition. The processor’s packed double-precision floating-
point instructions enhance performance for applications that require greater range and preci-
sion, including scientific and engineering applications and advanced 3-D geometry tech-
niques, such as ray tracing.

To speed up processing and improve cache usage, the SSE2 extensions offer several new
instructions that allow application programmers to control the cacheability of data. These
instructions provide the ability to stream data in and out of the registers without disrupting the
caches and the ability to prefetch data before it is actually used.

The new architectural features introduced with the SSE2 extensions do not require new oper-
ating system support. This is because the SSE2 extensions do not introduce new architectural
states, and the FXSAVE/FXRSTOR instructions, which supports the SSE extensions, also
supports SSE2 extensions and are sufficient for saving and restoring the state of the XMM regis-
ters, the MMX registers, and the x87 FPU registers during a context switch. The CPUID instruc-
tion has been enhanced to allow operating system or applications to identify for the existence of
the SSE and SSE2 features.

The SSE2 extensions are accessible in all IA-32 architecture operating modes on the Intel
Pentium 4 and Intel Xeon processors. Both processors maintain IA-32 software compatibility
meaning all existing software continues to run correctly, without modification on the Pentium 4,
Intel Xeon, and future IA-32 processors that incorporate the SSE2 extensions. Also, existing
software continues to run correctly in the presence of applications that make use of the SSE2
instructions.

2.2.3. The Intel® NetBurst® Micro-Architecture

The Intel NetBurst micro-architecture provides:

® The Rapid Execution Engine
— Arithmetic Logic Units (ALUs) run at twice the processor frequency
— Basic integer operations executes in 1/2 processor clock tick
— Provides higher throughput and reduced latency of execution

® Hyper-Pipelined Technology

2-9

INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE Intel®

— Twenty-stage pipeline to enable industry-leading clock rates for desktop PCs and
servers

— Frequency headroom and scalability to continue leadership into the future
® Advanced Dynamic Execution
— Deep, out-of-order, speculative execution engine.
® Up to 126 instructions in flight
* Up to 48 loads and 24 stores in pipeline
— Enhanced branch prediction capability
* Reduces the misprediction penalty associated with deeper pipelines
® Advanced branch prediction algorithm
* 4K-entry branch target array
® New cache subsystem
— First level caches
® Advanced Execution Trace Cache stores decoded instructions
¢ Execution Trace Cache removes decoder latency from main execution loops

¢ Execution Trace Cache integrates path of program execution flow into a single
line

* Low latency data cache with 2 cycle latency

— Second level cache
* Full-speed, unified 8-way Level 2 on-die Advance Transfer Cache
¢ Bandwidth and performance increases with processor frequency

® High-performance, quad-pumped bus interface to the Intel NetBurst micro-architecture
system bus

— Supports quad-pumped, scalable bus clock to achieve 4X effective speed

— Capable of delivering up to 3.2 GB of bandwidth per second (Pentium 4 and Intel
Xeon processors)

® Superscalar issue to enable parallelism
® Expanded hardware registers with renaming to avoid register name space limitations
® 128-byte cache line size (two 64-byte sectors)

Figure 2-2 is an overview of the Intel NetBurst micro-architecture. This micro-architecture pipe-
line is made up of three sections: (1) the front end pipeline (2) the out-of-order execution core,
and (3) the retirement unit.

2-10

Intel e INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE

System Bus

‘ Yy ’ =) Frequently used paths

v

—-—-+ Less frequently used paths

Bus Unit

|
| 3rd Level Cache |
| Optional, Server Product Only |

2nd Level Cache o 1st Level Cache

8-Way 4-way
' Front End jt
H ront En

| . Trace Cache o Execution o .

Fetch/Decode he Microcode ROM 77| out-Of-Order Core = Retirement
? A
i 1
Branch History Update

BTBs/Branch Prediction <

Figure 2-2. The Intel NetBurst Micro-Architecture

2.23.1. THE FRONT END PIPELINE

The front end supplies instructions in program order to the out-of-order execution core. It
performs a number of functions:

® Prefetches IA-32 instructions that are likely to be executed

® Fetches instructions that have not already been prefetched

® Decodes IA-32 instructions into micro-operations

® Generates microcode for complex instructions and special-purpose code
® Delivers decoded instructions from the execution trace cache

® Predicts branches using highly advanced algorithm

The pipeline is designed to address common problems in high-speed, pipelined microproces-
sors. Two of these problems contribute to major sources of delays:

® Time to decode instructions fetched from the target
® Wasted decode bandwidth due to branches or branch target in the middle of cache lines

The operation of the pipeline’s trace cache addresses these issues. Instructions are constantly
being fetched and decoded by the translation engine (part of the fetch/decode logic) and built

INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE Intel®

into sequences of pops called traces. At any time, multiple traces (representing prefetched
branches) are being stored in the trace cache. The trace cache is searched for the instruction that
follows the active branch. If the instruction also appears as the first instruction in a pre-fetched
branch, the fetch and decode of instructions from the memory hierarchy ceases and the pre-
fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hardware. Branch
targets are predicted based on their linear addresses using branch target buffers (BTBs) and
fetched as soon as possible.

2.2.3.2. OUT-OF-ORDER EXECUTION CORE

The out-of-order execution core’s ability to execute instructions out of order is a key factor in
enabling parallelism. This feature enables the processor to reorder instructions so that if one pop
is delayed, other pops may proceed around it. The processor employs several buffers to smooth
the flow of pops.

The core is designed to facilitate parallel execution. It can dispatch up to six pops per cycle (this
exceeds trace cache and retirement pop bandwidth). Most pipelines can start executing a new
pop every cycle, so several instructions can be in flight at a time for each pipeline. A number of
arithmetic logical unit (ALU) instructions can start at two per cycle; many floating-point instruc-
tions can start once every two cycles.

Note that pops can begin execution, out of order, as soon as their data inputs are ready and
resources are available.

2.2.3.3. RETIREMENT UNIT

The retirement unit receives the results of the executed pops from the out-of-order execution
core and processes the results so that the architectural state updates according to the original
program order. Instructions retire in program order. IA-32 exceptions always occur in program
order. This means that exceptions do not occur speculatively; they must occur in correct order
so that there can be an appropriate restart after an exception.

When a pop completes and writes its result, it is retired. Up to three pops may be retired per
cycle. The Reorder Buffer (ROB) is the unit in the processor which buffers completed pops,
updates the architectural state in order, and manages the ordering of exceptions. The retirement
section also keeps track of branches and sends updated branch target information to the BTB.
The BTB then purges pre-fetched traces that are no longer needed.

2.2.4. Hyper-Threading Technology

Hyper-Threading (HT) Technology was developed to improve the performance of IA-32 proces-
sors when executing multi-threaded operating system and application code or single-threaded
applications under multi-tasking environments. The technology enables a single physical
processor to execute two or more separate code streams (threads) concurrently.

2-12

Intel e INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE

Architecturally, an IA-32 processor that supports HT Technology consists of two or more logical
processors, each of which has its own IA-32 architectural state. Each logical processor consists
of the TA-32 data registers, segment registers, control registers, debug registers and most of the
MSRs. Each also has its own advanced programmable interrupt controller (APIC).

Figure 2-3 shows a comparison of an IA-32 processor with HT Technology (implemented with
two logical processors) and a traditional dual processor system.

IA-32 Processor with Traditional Multiple Processor (MP) System
Hyper-Threading Technology

Processor Core Processor Core Processor Core

|1A-32 processor 1A-32 processor 1A-32 processor

Each processor is a
separate physical
package

Two logical processors
that share a single core

N L
/7 N\

AS = |A-32 Architectural State

WV

N

Figure 2-3. Comparison of an I1A-32 Processor with Hyper-Threading Technology and a
Traditional Dual Processor System

Unlike a traditional MP system configuration that uses two or more separate physical IA-32
processors, the logical processors in an IA-32 processor with HT Technology share the core
resources of the physical processor. This includes the execution engine and the system bus inter-
face. After power up and initialization, each logical processor can be independently directed to
execute a specified thread, interrupted, or halted.

HT Technology leverages the process and thread-level parallelism found in contemporary oper-
ating systems and high-performance applications by providing two or more logical processors
on a single chip. This configuration allows two or more threads? to be executed simultaneously
on each a physical processor. Each logical processor executes instructions from an application
thread using the resources in the processor core. The core executes these threads concurrently,

2. In the remainder of this document, the term “thread” will be used as a general term for the terms “pro-
cess” and “thread.”

2-13

INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE Intel®

using out-of-order instruction scheduling to maximize the use of execution units during each
clock cycle.

2.24.1. NOTES ON IMPLEMENTATION

Hyper-Threading (HT) Technology was introduced into the IA-32 architecture in the Intel Xeon
processor MP and in later steppings of the Intel Xeon processor. It is also supported by the Intel
Pentium 4 processor at 3.06 GHz or higher. All HT Technology configurations require a chipset
and BIOS that utilize the technology, and an operating system that includes optimizations for
HT technology. See www.intel.com/info/hyperthreading for more information.

At the firmware (BIOS) level, the basic procedures to initialize the logical processors in a
processor supporting HT Technology are the same as those for a traditional DP or MP platform3 .
The same mechanisms that are described in the Multiprocessor Specification Version 1.4 to
power-up and initialize physical processors in an MP system apply to the logical processors in
a HT Technology-enabled processor. An operating system designed to run on a traditional DP
or MP platform uses the CPUID instruction to detect the presence of an IA-32 processor with
Hyper-Threading Technology and the number of logical processors it provides.

Although existing operating system and application code should run correctly on a processor
that supports HT Technology, some code modifications are recommended to get the optimum
benefit. These modifications are discussed in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3, in the section titled “Required Operating System Support” in Chapter 7,
Multiple Processor Management.

2.3. MOORE’S LAW AND IA-32 PROCESSOR GENERATIONS

In the mid-1960s, Intel cofounder and Chairman Emeritus Gordon Moore had this observation:
“the number of transistors that would be incorporated on a silicon die would double every 18
months for the next several years.” Over the past three and half decades, this prediction known
as “Moore's Law has continued to hold true.

The computing power and the complexity (or roughly, the number of transistors per processor)
of Intel architecture processors has grown in close relation to Moore's law. By taking advantage
of new process technology and new micro-architecture designs, each new generation of IA-32
processors has demonstrated frequency-scaling headroom and new performance levels over the
previous generation processors.

The key features of the Intel Pentium 4 processor, Intel Xeon processor, Intel Xeon processor
MP, Pentium Il and Pentium Il Xeon processors with advanced transfer cache are shown in
Table 2-1. Older generation IA-32 processors, which do not employ on-die Level 2 cache, are
shown in Table 2-2.

3. Some relatively simple enhancements to the MP initialization algorithm are needed.

2-14

intel.

INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE

Table 2-1. Key Features of Most Recent IA-32 Processors

Clock System| Max.
Date Frequency | Transis- Bus |Extern.
Intel Intro- Micro- at Intro- | tors Per | Register | Band- | Addr. On-Die
Processor | duced | Architecture | duction Die Sizes' width | Space Caches?
Pentium 4 2000 |Intel NetBurst | 1.50 GHz 42 M GP: 32 3.2 64 GB [12K pop
Processor Micro- FPU: 80 GB/s Execution
architecture MMX: 64 Trace
XMM: 128 Cache;
8KB L1;
256-KB L2
Intel Xeon 2001 |Intel NetBurst | 1.70 GHz 42 M GP: 32 3.2 64 GB [12K pop
Processor Micro- FPU: 80 GB/s Trace
architecture MMX: 64 Cache;
XMM: 128 8-KB L1;
256-KB L2
Intel Xeon 2002 |Intel NetBurst | 2.20 GHz 55 M GP: 32 3.2 64 GB | 12K pop
Processor Micro- FPU: 80 GB/s Trace
architecture; MMX: 64 Cache;
Hyper- XMM: 128 8-KB L1;
Threading 512-KB L2
Technology
Intel Xeon 2002 |Intel NetBurst | 1.60 GHz 108 M GP: 32 3.2 64 GB | 12K pop
Processor Micro- FPU: 80 GB/s Trace
MP architecture; MMX: 64 Cache;
Hyper- XMM: 128 8-KB L1;
Threading 256-KB L2;
Technology 1-MB L3
Intel 2002 |Intel NetBurst | 3.06 GHz 55M GP: 32 4.2 64 GB | 12K pop
Pentium 4 Micro- FPU: 80 GB/s Execution
Processor architecture; MMX: 64 Trace
supporting Hyper- XMM: 128 Cache;
Hyper- Threading 8KB L1;
Threading Technology 512-KB L2
Technology
Intel 2003 |Intel Pentium | 1.60 GHz 77M GP: 32 3.2 64 GB |L1: 64KB
Pentium M M Processor FPU: 80 GB/s L2: 1IMB
Processor MMX: 64
XMM: 128
NOTES

1. The register size and external data bus size are given in bits.

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size of L1
includes the first-level data cache and the instruction cache where applicable, but does not include the
trace cache.

2-15

INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE Intel®

Table 2-2. Key Features of Previous Generations of IA-32 Processors

Max. Clock Ext. Max.
Date Frequency | Transis Data | Extern.
Intro- at Intro- -tors Register Bus Addr.
Intel Processor duced duction per Die Sizes' Size? Space Caches
8086 1978 8 MHz 29K 16 GP 16 1MB | None
Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB | Note 3

Intel386 DX Processor 1985 20 MHz 275 K 32 GP 32 4GB | Note 3
Intel486 DX Processor 1989 25 MHz 1.2M 32 GP 32 4GB | L1:8KB

80 FPU
Pentium Processor 1993 60 MHz 3.1 M 32 GP 64 4GB | L1:16KB
80 FPU
Pentium Pro Processor 1995 200 MHz 55M 32 GP 64 64 GB | L1: 16KB
80 FPU L2: 256KB
or 512KB
Pentium II Processor 1997 266 MHz 7M 32 GP 64 64 GB | L1: 32KB
80 FPU L2: 256KB
64 MMX or 512KB
Pentium Ill Processor 1999 500 MHz 82M 32 GP 64 64 GB | L1: 32KB
80 FPU L2: 512KB
64 MMX
128
XMM
Pentium Il and 1999 700 MHz 28 M 32 GP 64 64 GB | L1: 32KB
Pentium Ill Xeon 80 FPU L2: 256KB
Processors 64 MMX
128
XMM

NOTES:

1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose
(GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors.

2. Internal data paths that are 2 to 4 times wider than the external data bus for each processor.

2-16

IA-32 Execution
Environment

CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an IA-32 processor as seen by
assembly-language programmers. It describes how the processor executes instructions and how
it stores and manipulates data. The parts of the execution environment described here include
memory (the address space), the general-purpose data registers, the segment registers, the
EFLAGS register, and the instruction pointer register.

3.1. MODES OF OPERATION

The IA-32 architecture supports three operating modes: protected mode, real-address mode, and
system management mode. The operating mode determines which instructions and architectural
features are accessible:

® Protected mode. This mode is the native state of the processor. In this mode all instruc-
tions and architectural features are available, providing the highest performance and
capability. This is the recommended mode for all new applications and operating systems.
Among the capabilities of protected mode is the ability to directly execute “real-address
mode” 8086 software in a protected, multi-tasking environment. This feature is called
virtual-8086 mode, although it is not actually a processor mode. Virtual-8086 mode is
actually a protected mode attribute that can be enabled for any task.

¢ Real-address mode. This mode implements the programming environment of the Intel
8086 processor with a few extensions (such as the ability to switch to protected or system
management mode). The processor is placed in real-address mode following power-up or a
reset.

® System management mode (SSM). This mode provides an operating system or executive
with a transparent mechanism for implementing platform-specific functions such as power
management and system security. The processor enters SMM when the external SMM
interrupt pin (SMI#) is activated or an SMI is received from the advanced programmable
interrupt controller (APIC). In SMM, the processor switches to a separate address space
while saving the basic context of the currently running program or task. SMM-specific
code may then be executed transparently. Upon returning from SMM, the processor is
placed back into its state prior to the system management interrupt. SSM was introduced
with the Intel386"" SL and Intel486"" SL processors and became a standard TA-32 feature
with the Pentium processor family.

The basic execution environment is the same for each of these operating modes, as is described
in the remaining sections of this chapter.

BASIC EXECUTION ENVIRONMENT Intel®

3.2. OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT

Any program or task running on an IA-32 processor is given a set of resources for executing
instructions and for storing code, data, and state information. These resources (described briefly
in the following paragraphs and shown in Figure 3-1) make up the basic execution environment
for an IA-32 processor. This basic execution environment is used jointly by the application
programs and the operating-system or executive running on the processor.

® Address Space. Any task or program running on an IA-32 processor can address a linear
address space of up to 4 GBytes (2°2 bytes) and a physical address space of up to
64 GBytes (2°° bytes). (See Section 3.3.3., “Extended Physical Addressing” for more
information about addressing an address space greater than 4 GBytes.)

® Basic program execution registers. The eight general-purpose registers, the six segment
registers, the EFLAGS register, and the EIP (instruction pointer) register comprise a basic
execution environment in which to execute a set of general-purpose instructions. These
instructions perform basic integer arithmetic on byte, word, and doubleword integers,
handle program flow control, operate on bit and byte strings, and address memory. (See
Section 3.4., “Basic Program Execution Registers”, for more information about these
registers.)

® x87 FPU registers. The eight x87 FPU data registers, the x87 FPU control register, the
status register, the x87 FPU instruction pointer register, the x87 FPU operand (data) pointer
register, the x87 FPU tag register, and the x87 FPU opcode register provide an execution
environment for operating on single-precision, double-precision, and double extended-
precision floating-point values, word-, doubleword, and quadword integers, and binary
coded decimal (BCD) values. (See Section 8.1., “x87 FPU Execution Environment”, for
more information about these registers.)

® MMX™ registers. The eight MMX registers support execution of single-instruction,
multiple-data (SIMD) operations on 64-bit packed byte, word, and doubleword integers.
(See Section 9.2., “the MMX Technology Programming Environment”, for more
information about these registers.)

® XMM registers. The eight XMM data registers and the MXCSR register support
execution of SIMD operations on 128-bit packed single-precision and double-precision
floating-point values and on 128-bit packed byte, word, doubleword, and quadword
integers. (See Section 10.2., “SSE Programming Environment”, for more information
about these registers.)

® Stack. To support procedure or subroutine calls and the passing of parameters between
procedures or subroutines, a stack and stack management resources are included in the
execution environment. The stack (not shown in Figure 3-1) is located in memory. (See
Section 6.2., “Stack”, for more information about the stack structure.)

In addition to the resources provided in the basic execution environment, the IA-32 architecture
provides the following system resources. These resources are part of the IA-32 architecture’s
system-level architecture. They provide extensive support for operating-system and system-
development software. Except for the I/O ports, the system resources are described in detail in
the IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System Programming
Guide.

3-2

Intelo BASIC EXECUTION ENVIRONMENT

Basic Program Execution Registers Address Space*
2%2 4
Eight 32-bit General-Purpose Registers
Registers
ggg]sstet:'g Segment Registers
| 32-bits | EFLAGS Register
| 32-bits | EIP (Instruction Pointer Register)

FPU Registers

Eight 80-bit Floating-Point
Registers Data Registers 0
*The address space can be
— . flat or segmented. Using
16-bits Control Reglster the physical address
16-bits Status Register extension mechanism, a
- . physical address space of
16-bits Tag Register 236 _1 can be addressed.

[] Opcode Register (11-bits)
|
|

| 48-bits FPU Instruction Pointer Register
| 48-bits FPU Data (Operand) Pointer Register
MMX Registers
El'i'(ger;;tigttrts)lt MMX Registers

SSE and SSE2 Registers

Eilght 128-bit XMM Registers
egisters

| 32-bits | MXCSR Register

Figure 3-1. 1A-32 Basic Execution Environment

3-3

BASIC EXECUTION ENVIRONMENT Intel®

I/0 Ports. The IA-32 architecture supports a transfers of data to and from input/output
(I/0) ports (see Chapter 12, Input/Output, in this volume).

Control registers. The five control registers (CRO through CR4) determine the operating
mode of the processor and the characteristics of the currently executing task (see the
section titled “Control Registers” in Chapter 2 of the [A-32 Intel Architecture Software
Developer’s Manual, Volume 3).

Memory management registers. The GDTR, IDTR, task register, and LDTR specify the
locations of data structures used in protected mode memory management (see the section
titled “Memory-Management Registers” in Chapter 2 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 3).

Debug registers. The debug registers (DRO through DR7) control and allow monitoring of
the processor’s debugging operations (see the section titled “Debug Registers” in Chapter
15 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3).

Memory type range registers (MTRRs). The MTRRs are used to assign memory types to
regions of memory (see the section titled “Memory Type Range Registers [MTRRs]” in
Chapter 10 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3).

Machine specific registers (MSRs). The processor provides a variety of machine specific
registers that are used to control and report on processor performance. Virtually all MSRs
handle system related functions and are not accessible to an application program. One
exception to this rule is the time-stamp counter. The MSRs are described Appendix B,
Model-Specific Registers (MSRs) of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3).

Machine check registers. The machine check registers consist of a set of control, status,
and error-reporting MSRs that are used to detect and report on hardware (machine) errors
(see the section titled “Machine-Check MSRs” in Chapter 14 of the [A-32 Intel Archi-
tecture Software Developer’s Manual, Volume 3).

Performance monitoring counters. The performance monitoring counters allow
processor performance events to be monitored (see the section titled “Performance
Monitoring Overview” in Chapter 15 of the [A-32 Intel Architecture Software Developer’s
Manual, Volume 3).

The remainder of this chapter describes the organization of memory and the address space, the
basic program execution registers, and addressing modes. Refer to the following chapters in this
volume for descriptions of the other program execution resources shown in Figure 3-1:

3-4

x87 FPU registers—See Chapter 8, Programming with the x87 FPU.
MMX Registers—See Chapter 9, Programming With the Intel MMX Technology.

XMM registers—See Chapter 10, Programming with the Streaming SiMD Extensions
(SSE) and Chapter 11, Programming With the Streaming SIMD Extensions 2 (SSE2),
respectively.

Stack implementation and procedure calls—See Chapter 6, Procedure Calls, Interrupts,
and Exceptions.

Intelo BASIC EXECUTION ENVIRONMENT

3.3. MEMORY ORGANIZATION

The memory that the processor addresses on its bus is called physical memory. Physical
memory is organized as a sequence of 8-bit bytes. Each byte is assigned a unique address, called
a physical address. The physical address space ranges from zero to a maximum of 2°°-1
(64 GBytes).

Virtually any operating system or executive designed to work with an IA-32 processor will use
the processor’s memory management facilities to access memory. These facilities provide
features such as segmentation and paging, which allow memory to be managed efficiently and
reliably. Memory management is described in detail in Chapter 3, Protected-Mode Memory
Management, in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3. The
following paragraphs describe the basic methods of addressing memory when memory manage-
ment is used.

When employing the processor’s memory management facilities, programs do not directly
address physical memory. Instead, they access memory using any of three memory models: flat,
segmented, or real-address mode.

With the flat memory model (see Figure 3-2), memory appears to a program as a single, contin-
uous address space, called a linear address space. Code (a program’s instructions), data, and
the procedure stack are all contained in this address space. The linear address space is byte
addressable, with addresses running contiguously from 0 to 2°2 — 1. An address for any byte in
the linear address space is called a linear address.

With the segmented memory model, memory appears to a program as a group of independent
address spaces called segments. When using this model, code, data, and stacks are typically
contained in separate segments. To address a byte in a segment, a program must issue a logical
address, which consists of a segment selector and an offset. (A logical address is often referred
to as a far pointer.) The segment selector identifies the segment to be accessed and the offset
identifies a byte in the address space of the segment. The programs running on an [A-32
processor can address up to 16,383 segments of different sizes and types, and each segment can
be as large as 2°? bytes.

Internally, all the segments that are defined for a system are mapped into the processor’s linear
address space. To access a memory location, the processor thus translates each logical address
into a linear address. This translation is transparent to the application program.

The primary reason for using segmented memory is to increase the reliability of programs and
systems. For example, placing a program’s stack in a separate segment prevents the stack from
growing into the code or data space and overwriting instructions or data, respectively. Placing
the operating system’s or executive’s code, data, and stack in separate segments also protects
them from the application program and vice versa.

With the flat or the segmented memory model, the linear address space is mapped into the
processor’s physical address space either directly or through paging. When using direct mapping
(paging disabled), each linear address has a one-to-one correspondence with a physical address
(that is, linear addresses are sent out on the processor’s address lines without translation). When
using the IA-32 architecture’s paging mechanism (paging enabled), the linear address space is
divided into pages, which are mapped into virtual memory.

BASIC EXECUTION ENVIRONMENT Intel ®

The pages of virtual memory are then mapped as needed into physical memory. When an oper-
ating system or executive uses paging, the paging mechanism is transparent to an application
program; that is, all the application program sees is the linear address space.

Flat Model
Linear Address
Linear
Address
Space*

Segmented Model

Segments

Linear
I:IOﬁset Address
Logical Space*
Addgress Segment Selector »
Real-Address Mode Model
Linear Address
Offset Space Divided | — — -
|:| Into Equal
. Sized Segments | _ _ |
Ala%?gfsl Segment Selector .
* The linear address space r
can be paged when using the

flat or segmented model.

Figure 3-2. Three Memory Management Models

The real-address mode memory model uses the memory model for the Intel 8086 processor.
This memory model is supported in the IA-32 architecture for compatibility with existing
programs written to run on the Intel 8086 processor. The real-address mode uses a specific
implementation of segmented memory in which the linear address space for the program and the
operating system/executive consists of an array of segments of up to 64 KBytes in size each. The
maximum size of the linear address space in real-address mode is 22° bytes. (See Chapter 16,
8086 Emulation, in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for
more information on this memory model.)

3-6

Intelo BASIC EXECUTION ENVIRONMENT

3.3.1. Modes of Operation vs. Memory Model

When writing code for an IA-32 processor, a programmer needs to know the operating mode the
processor is going to be in when executing the code and the memory model being used. The rela-
tionship between operating modes and memory models is as follows:

® Protected mode. When in protected mode, the processor can use any of the memory
models described in this section. (The real-addressing mode memory model is ordinarily
used only when the processor is in the virtual-8086 mode.) The memory model used
depends on the design of the operating system or executive. When multitasking is imple-
mented, individual tasks can use different memory models.

® Real-address mode. When in real-address mode, the processor only supports the real-
address mode memory model.

® System management mode. When in SMM, the processor switches to a separate address
space, called the system management RAM (SMRAM). The memory model used to
address bytes in this address space is similar to the real-address mode model. (See Chapter
13, System Management Mode (SMM), in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for more information on the memory model used in
SMM.)

3.3.2. 32-Bit vs. 16-Bit Address and Operand Sizes

The processor can be configured for 32-bit or 16-bit address and operand sizes. With 32-bit
address and operand sizes, the maximum linear address or segment offset is FFFFFFFFH
(2%-1), and operand sizes are typically 8 bits or 32 bits. With 16-bit address and operand sizes,
the maximum linear address or segment offset is FFFFH (2!°-1), and operand sizes are typically
8 bits or 16 bits.

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment
selector and a 32-bit offset; when using 16-bit addressing, it consists of a 16-bit segment selector
and a 16-bit offset.

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from
within a program.

When operating in protected mode, the segment descriptor for the currently executing code
segment defines the default address and operand size. A segment descriptor is a system data
structure not normally visible to application code. Assembler directives allow the default
addressing and operand size to be chosen for a program. The assembler and other tools then set
up the segment descriptor for the code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 bits. An
address-size override can be used in real-address mode to enable 32-bit addressing; however, the
maximum allowable 32-bit linear address is still 000FFFFFH (2%°-1).

BASIC EXECUTION ENVIRONMENT Intel®

3.3.3. Extended Physical Addressing

Beginning with the P6 family processors, the IA-32 architecture supports addressing of up to
64 GBytes (2% bytes) of physical memory. A program or task cannot address locations in this
address space directly. Instead it addresses individual linear address spaces of up to 4 GBytes that
are mapped to the larger 64-GByte physical address space through the processor’s virtual
memory management mechanism. A program can switch between linear address spaces within
this 64-GByte physical address space by changing segment selectors in the segment registers.
The use of extended physical addressing requires the processor to operate in protected mode and
the operating system to provide a virtual memory management system. (See “36-Bit Physical
Addressing Using the PAE Paging Mechanism” in Chapter 3 of the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 3 for more information about this addressing mechanism.)

3.4. BASIC PROGRAM EXECUTION REGISTERS

The processor provides 16 registers basic program execution registers for use in general system
and application programing. As shown in Figure 3-3, these registers can be grouped as follows:

® General-purpose registers. These eight registers are available for storing operands and
pointers.

® Segment registers. These registers hold up to six segment selectors.

® EFLAGS (program status and control) register. The EFLAGS register report on the
status of the program being executed and allows limited (application-program level)
control of the processor.

¢ EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next
instruction to be executed.

3.4.1. General-Purpose Registers

The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are
provided for holding the following items:

® Operands for logical and arithmetic operations
® Operands for address calculations
® Memory pointers

Although all of these registers are available for general storage of operands, results, and
pointers, caution should be used when referencing the ESP register. The ESP register holds the
stack pointer and as a general rule should not be used for any other purpose.

Many instructions assign specific registers to hold operands. For example, string instructions
use the contents of the ECX, ESI, and EDI registers as operands. When using a segmented
memory model, some instructions assume that pointers in certain registers are relative to
specific segments. For instance, some instructions assume that a pointer in the EBX register
points to a memory location in the DS segment.

3-8

Intelo BASIC EXECUTION ENVIRONMENT

31 General-Purpose Registers

EAX
EBX
ECX
EDX
ESI

EDI

EBP
ESP

Segment Registers
15 0

CS
DS
SS
ES
FS
GS

Program Status and Control Register

| | EFLAGS

31 Instruction Pointer 0

| | EIP

Figure 3-3. General System and Application Programming Registers

The special uses of general-purpose registers by instructions are described in Chapter 5, Instruc-
tion Set Summary, in this volume and Chapter 3, Instruction Set Reference, in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 2. The following is a summary of these
special uses:

® EAX—Accumulator for operands and results data.
¢ EBX—Pointer to data in the DS segment.

® ECX—Counter for string and loop operations.

® EDX—I/O pointer.

® ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string
operations.9

® EDI—Pointer to data (or destination) in the segment pointed to by the ES register;
destination pointer for string operations.

3-9

BASIC EXECUTION ENVIRONMENT Intel®

® ESP—Stack pointer (in the SS segment).
¢ EBP—Pointer to data on the stack (in the SS segment).

As shown in Figure 3-4, the lower 16 bits of the general-purpose registers map directly to the
register set found in the 8086 and Intel 286 processors and can be referenced with the names
AX, BX, CX, DX, BP, SP, SI, and DI. Each of the lower two bytes of the EAX, EBX, ECX, and
EDX registers can be referenced by the names AH, BH, CH, and DH (high bytes) and AL, BL,
CL, and DL (low bytes).

General-Purpose Registers

31 1615 87 0 16-bit 32-bit
AH AL AX EAX
BH BL BX EBX
CH CL CX ECX
DH DL DX EDX
BP EBP

Sl ESI

DI EDI
SP ESP

Figure 3-4. Alternate General-Purpose Register Names

3.4.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. To access a particular segment
in memory, the segment selector for that segment must be present in the appropriate segment
register.

When writing application code, programmers generally create segment selectors with assembler
directives and symbols. The assembler and other tools then create the actual segment selector
values associated with these directives and symbols. If writing system code, programmers may
need to create segment selectors directly. (A detailed description of the segment-selector data
structure is given in Chapter 3, Protected-Mode Memory Management, of the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 3.)

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, the
segment registers are loaded with segment selectors that point to overlapping segments, each of
which begins at address O of the linear address space (as shown in Figure 3-5). These overlap-
ping segments then comprise the linear address space for the program. (Typically, two overlap-
ping segments are defined: one for code and another for data and stacks. The CS segment
register points to the code segment and all the other segment registers point to the data and stack
segment.)

3-10

intel.

BASIC EXECUTION ENVIRONMENT

When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment within the
linear address space (as shown in Figure 3-6). At any time, a program can thus access up to six
segments in the linear address space. To access a segment not pointed to by one of the segment
registers, a program must first load the segment selector for the segment to be accessed into a

segment register.

Segment Registers

CS—
DS —
S§S ——
ES —
FS —
GS—

The segment selector in

Linear Address
Space for Program

Overlapping
Segments
of up to
4G Bytes
Beginning at
Address 0

each segment register
points to an overlapping
segment in the linear
address space.

\

Figure 3-5. Use of Segment Registers for Flat Memory Model

Segment Registers

Code
Segment
Data
cs Segment
DS Stack
SS Segment
ES ——
FS — >
GS—
Data
Segment
Data
Segment
o Data
Segment

L
’ o

All segments
are mapped
to the same
linear-address
space

Figure 3-6. Use of Segment Registers in Segmented Memory Model

BASIC EXECUTION ENVIRONMENT Intel®

Each of the segment registers is associated with one of three types of storage: code, data, or
stack). For example, the CS register contains the segment selector for the code segment, where
the instructions being executed are stored. The processor fetches instructions from the code
segment, using a logical address that consists of the segment selector in the CS register and the
contents of the EIP register. The EIP register contains the offset within the code segment of the
next instruction to be executed. The CS register cannot be loaded explicitly by an application
program. Instead, it is loaded implicitly by instructions or internal processor operations that
change program control (such as, procedure calls, interrupt handling, or task switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of four data
segments permits efficient and secure access to different types of data structures. For example,
four separate data segments might be created: one for the data structures of the current module,
another for the data exported from a higher-level module, a third for a dynamically created data
structure, and a fourth for data shared with another program. To access additional data segments,
the application program must load segment selectors for these segments into the DS, ES, FS, and
GS registers, as needed.

The SS register contains the segment selector for a stack segment, where the procedure stack is
stored for the program, task, or handler currently being executed. All stack operations use the
SS register to find the stack segment. Unlike the CS register, the SS register can be loaded
explicitly, which permits application programs to set up multiple stacks and switch among them.

See Section 3.3., “Memory Organization”, for an overview of how the segment registers are
used in real-address mode.

The four segment registers CS, DS, SS, and ES are the same as the segment registers found in
the Intel 8086 and Intel 286 processors and the FS and GS registers were introduced into the IA-
32 Architecture with the Intel386™ family of processors.

3.4.3. EFLAGS Register

The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of
system flags. Figure 3-7 defines the flags within this register. Following initialization of the
processor (either by asserting the RESET pin or the INIT pin), the state of the EFLAGS register
is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register are reserved. Software should
not use or depend on the states of any of these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-purpose
instructions (described in the following sections). There are no instructions that allow the whole
register to be examined or modified directly. However, the following instructions can be used to
move groups of flags to and from the procedure stack or the EAX register: LAHF, SAHF,
PUSHE, PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been
transferred to the procedure stack or EAX register, the flags can be examined and modified using
the processor’s bit manipulation instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor automati-
cally saves the state of the EFLAGS register in the task state segment (TSS) for the task being
suspended. When binding itself to a new task, the processor loads the EFLAGS register with
data from the new task’s TSS.

3-12

Intel ® BASIC EXECUTION ENVIRONMENT

When a call is made to an interrupt or exception handler procedure, the processor automatically
saves the state of the EFLAGS registers on the procedure stack. When an interrupt or exception
is handled with a task switch, the state of the EFLAGS register is saved in the TSS for the task
being suspended.

313029 282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

v|v
olololo|ofo|olololo|l|1|1[A]V|R ¢

D|p|p|CIM
ID Flag (ID} ‘
Virtual Interrupt Pending (VIP
Virtual Interrupt Flag (VIF)

olp|1|T|s|z|,|Al4]P
F F|F F

4
—rUO-—

Alignment Check (AC)
Virtual-8086 Mode (VM)
Resume Flag (RF)
Nested Task (NT)
I/0 Privilege Level (IOPL)
Overflow Flag (OF)
Direction Flag (DF)
Interrupt Enable Flag (IF)
Trap Flag (TF)
Sign Flag (SF)
Zero Flag (ZF)
Auxiliary Carry Flag (AF)
Parity Flag (PF)
Carry Flag (CF)

Indicates a Status Flag
Indicates a Control Flag
Indicates a System Flag

XOOW VOOONXXOXXXXXX XXX

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Figure 3-7. EFLAGS Register

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, but the
function and placement of existing flags have remained the same from one family of the [A-32
processors to the next. As a result, code that accesses or modifies these flags for one family of
IA-32 processors works as expected when run on later families of processors.

3-13

BASIC EXECUTION ENVIRONMENT Intel®

3.4.3.1. STATUS FLAGS

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arith-
metic instructions, such as the ADD, SUB, MUL, and DIV instructions. The functions of the
status flags are as follows:

CF (bit 0) Carry flag. Set if an arithmetic operation generates a carry or a borrow out
of the most-significant bit of the result; cleared otherwise. This flag indi-
cates an overflow condition for unsigned-integer arithmetic. It is also used
in multiple-precision arithmetic.

PF (bit 2) Parity flag. Set if the least-significant byte of the result contains an even
number of 1 bits; cleared otherwise.

AF (bit 4) Adjust flag. Set if an arithmetic operation generates a carry or a borrow
out of bit 3 of the result; cleared otherwise. This flag is used in binary-
coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag. Set if the result is zero; cleared otherwise.

SF (bit 7) Sign flag. Set equal to the most-significant bit of the result, which is the
sign bit of a signed integer. (0 indicates a positive value and 1 indicates a
negative value.)

OF (bit 11) Overflow flag. Set if the integer result is too large a positive number or
too small a negative number (excluding the sign-bit) to fit in the destina-
tion operand; cleared otherwise. This flag indicates an overflow condition
for signed-integer (two’s complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC
instructions. Also the bit instructions (BT, BTS, BTR, and BTC) copy a specified bit into the CF
flag.

The status flags allow a single arithmetic operation to produce results for three different data
types: unsigned integers, signed integers, and BCD integers. If the result of an arithmetic oper-
ation is treated as an unsigned integer, the CF flag indicates an out-of-range condition (carry or
a borrow); if treated as a signed integer (two’s complement number), the OF flag indicates a
carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry or borrow. The SF
flag indicates the sign of a signed integer. The ZF flag indicates either a signed- or an unsigned-
integer zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in conjunction
with the add with carry (ADC) and subtract with borrow (SBB) instructions to propagate a carry
or borrow from one computation to the next.

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code
cc), LOOPcc, and CMOVcc (conditional move) use one or more of the status flags as condition
codes and test them for branch, set-byte, or end-loop conditions.

3-14

Intelo BASIC EXECUTION ENVIRONMENT

3.4.3.2. DF FLAG

The direction flag (DF, located in bit 10 of the EFLAGS register) controls the string instructions
(MOVS, CMPS, SCAS, LODS, and STOS). Setting the DF flag causes the string instructions to
auto-decrement (that is, to process strings from high addresses to low addresses). Clearing the
DF flag causes the string instructions to auto-increment (process strings from low addresses
to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3.4.4. System Flags and IOPL Field

The system flags and IOPL field in the EFLAGS register control operating-system or executive
operations. They should not be modified by application programs. The functions of the
system flags are as follows:

IF (bit 9) Interrupt enable flag. Controls the response of the processor to
maskable interrupt requests. Set to respond to maskable interrupts;
cleared to inhibit maskable interrupts.

TF (bit 8) Trap flag. Set to enable single-step mode for debugging; clear to
disable single-step mode.

IOPL (bits 12 and 13) I/O privilege level field. Indicates the I/O privilege level of the
currently running program or task. The current privilege level (CPL)
of the currently running program or task must be less than or equal to
the I/0 privilege level to access the I/O address space. This field can
only be modified by the POPF and IRET instructions when operating
at a CPL of 0.

NT (bit 14) Nested task flag. Controls the chaining of interrupted and called
tasks. Set when the current task is linked to the previously executed
task; cleared when the current task is not linked to another task.

RF (bit 16) Resume flag. Controls the processor’s response to debug exceptions.

VM (bit 17) Virtual-8086 mode flag. Set to enable virtual-8086 mode; clear to
return to protected mode without virtual-8086 mode semantics.

AC (bit 18) Alignment check flag. Set this flag and the AM bit in the CRO

register to enable alignment checking of memory references; clear
the AC flag and/or the AM bit to disable alignment checking.

VIF (bit 19) Virtual interrupt flag. Virtual image of the IF flag. Used in
conjunction with the VIP flag. (To use this flag and the VIP flag the
virtual mode extensions are enabled by setting the VME flag in
control register CR4.)

VIP (bit 20) Virtual interrupt pending flag. Set to indicate that an interrupt is
pending; clear when no interrupt is pending. (Software sets and

3-15

BASIC EXECUTION ENVIRONMENT Intel®

clears this flag; the processor only reads it.) Used in conjunction with
the VIF flag.

ID (bit 21) Identification flag. The ability of a program to set or clear this flag
indicates support for the CPUID instruction.

See Chapter 3, Protected-Mode Memory Management, in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for a detail description of these flags.

3.5. INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset in the current code segment for the next
instruction to be executed. It is advanced from one instruction boundary to the next in straight-
line code or it is moved ahead or backwards by a number of instructions when executing JMP,
Jee, CALL, RET, and IRET instructions.

The EIP register cannot be accessed directly by software; it is controlled implicitly by control-
transfer instructions (such as JMP, Jcc, CALL, and RET), interrupts, and exceptions. The only
way to read the EIP register is to execute a CALL instruction and then read the value of the
return instruction pointer from the procedure stack. The EIP register can be loaded indirectly by
modifying the value of a return instruction pointer on the procedure stack and executing a return
instruction (RET or IRET). See Section 6.2.4.2., “Return Instruction Pointer”.

All TA-32 processors prefetch instructions. Because of instruction prefetching, an instruction
address read from the bus during an instruction load does not match the value in the EIP register.
Even though different processor generations use different prefetching mechanisms, the function
of EIP register to direct program flow remains fully compatible with all software written to run
on IA-32 processors.

3.6. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

When the processor is executing in protected mode, every code segment has a default operand-
size attribute and address-size attribute. These attributes are selected with the D (default size)
flag in the segment descriptor for the code segment (see Chapter 3, Protected-Mode Memory
Management, in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3). When
the D flag is set, the 32-bit operand-size and address-size attributes are selected; when the flag
is clear, the 16-bit size attributes are selected. When the processor is executing in real-address
mode, virtual-8086 mode, or SMM, the default operand-size and address-size attributes are
always 16 bits.

The operand-size attribute selects the sizes of operands that instructions operate on. When the
16-bit operand-size attribute is in force, operands can generally be either 8 bits or 16 bits, and
when the 32-bit operand-size attribute is in force, operands can generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or
32 bits. When the 16-bit address-size attribute is in force, segment offsets and displacements are
16 bits. This restriction limits the size of a segment that can be addressed to 64 KBytes. When

3-16

Intelo BASIC EXECUTION ENVIRONMENT

the 32-bit address-size attribute is in force, segment offsets and displacements are 32 bits,
allowing segments of up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a partic-
ular instruction by adding an operand-size and/or address-size prefix to an instruction (see
“Instruction Prefixes” in Chapter 2 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3). The effect of this prefix applies only to the instruction it is attached to.

Table 3-1 shows effective operand size and address size (when executing in protected mode)
depending on the settings of the D flag and the operand-size and address-size prefixes.

Table 3-1. Effective Operand- and Address-Size Attributes

D Flag in Code Segment

Descriptor 0 0 0 0 1 1 1 1

Operand-Size Prefix 66H N N Y Y N N Y Y

Address-Size Prefix 67H N Y N Y N Y N Y

Effective Operand Size 16 16 32 32 32 32 16 16

Effective Address Size 16 32 16 32 32 16 32 16
NOTES:

Y Yes, this instruction prefix is present.
N No, this instruction prefix is not present.

3.7. OPERAND ADDRESSING

IA-32 machine-instructions act on zero or more operands. Some operands are specified explic-
itly in an instruction and others are implicit to an instruction. The data for a source operand can
be located in any of the following places:

® The instruction itself (an immediate operand).
® Aregister.

® A memory location.

® AnI/O port.

When an instruction returns data to a destination operand, it can be returned to any of the
following places:

® Aregister.
® A memory location.

® An /O port.

BASIC EXECUTION ENVIRONMENT Intel®

3.7.1. Immediate Operands

Some instructions use data encoded in the instruction itself as a source operand. These operands
are called immediate operands (or simply immediates). For example, the following ADD
instruction adds an immediate value of 14 to the contents of the EAX register:

ADD EAX, 14

All the arithmetic instructions (except the DIV and IDIV instructions) allow the source operand
to be an immediate value. The maximum value allowed for an immediate operand varies among
instructions, but can never be greater than the maximum value of an unsigned doubleword
integer (232).

3.7.2. Register Operands

Source and destination operands can be any of the following registers, depending on the instruc-
tion being executed:

® The 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP).
® The 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP).

® The 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL).

® The segment registers (CS, DS, SS, ES, FS, and GS).

® The EFLAGS register.

® The x87 FPU registers (STO through ST7, status word, control word, tag word, data
operand pointer, and instruction pointer).

® The MMX registers (MMO through MM7).
® The XMM registers (XMMO through XXM?7) and the MXCSR register.

® The control registers (CR0O, CR2, CR3, CR4) and system table pointer registers (GDTR,
LDTR, IDTR, task register).

® The debug registers (DRO, DR1, DR2, DR3, DR6, DR7).
® The MSR registers.

Some instructions (such as the DIV and MUL instructions) use quadword operands contained
in a pair of 32-bit registers. Register pairs are represented with a colon separating them. For
example, in the register pair EDX:EAX, EDX contains the high order bits and EAX contains the
low order bits of a quadword operand.

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and
store the contents of the EFLAGS register or to set or clear individual flags in this register. Other
instructions (such as the Jcc instructions) use the state of the status flags in the EFLAGS register
as condition codes for branching or other decision making operations.

The processor contains a selection of system registers that are used to control memory manage-
ment, interrupt and exception handling, task management, processor management, and debug-

3-18

Intelo BASIC EXECUTION ENVIRONMENT

ging activities. Some of these system registers are accessible by an application program, the
operating system, or the executive through a set of system instructions. When accessing a
system register with a system instruction, the register is generally an implied operand of the
instruction.

3.7.3. Memory Operands

Source and destination operands in memory are referenced by means of a segment selector and
an offset (see Figure 3-8). The segment selector specifies the segment containing the operand
and the offset (the number of bytes from the beginning of the segment to the first byte of the
operand) specifies the linear or effective address of the operand.

15 0 31 0

Segment Offset (or Linear Address)
Selector

Figure 3-8. Memory Operand Address

3.7.3.1. SPECIFYING A SEGMENT SELECTOR

The segment selector can be specified either implicitly or explicitly. The most common method
of specifying a segment selector is to load it in a segment register and then allow the processor
to select the register implicitly, depending on the type of operation being performed. The
processor automatically chooses a segment according to the rules given in Table 3-2.

When storing data in or loading data from memory, the DS segment default can be overridden
to allow other segments to be accessed. Within an assembler, the segment override is generally
handled with a colon “:” operator. For example, the following MOV instruction moves a value
from register EAX into the segment pointed to by the ES register. The offset into the segment is

contained in the EBX register:

MOV ES: [EBX], EAX;

Table 3-2. Default Segment Selection Rules

Type of Register Segment
Reference Used Used Default Selection Rule

Instructions CS Code Segment | All instruction fetches.

Stack SS Stack Segment | All stack pushes and pops.
Any memory reference which uses the ESP or EBP
register as a base register.

Local Data DS Data Segment All data references, except when relative to stack or
string destination.

Destination ES Data Segment Destination of string instructions.

Strings pointed to with

the ES register

3-19

BASIC EXECUTION ENVIRONMENT Intel®

(At the machine level, a segment override is specified with a segment-override prefix, which is
a byte placed at the beginning of an instruction.) The following default segment selections
cannot be overridden:

® Instruction fetches must be made from the code segment.

® Destination strings in string instructions must be stored in the data segment pointed to by
the ES register.

® Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit
segment selector can be located in a memory location or in a 16-bit register. For example, the
following MOV instruction moves a segment selector located in register BX into segment
register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here,
the first doubleword in memory contains the offset and the next word contains the segment
selector.

3.7.3.2. SPECIFYING AN OFFSET

The offset part of a memory address can be specified either directly as an static value (called a
displacement) or through an address computation made up of one or more of the following
components:

® Displacement—An 8-, 16-, or 32-bit value.

® Base—The value in a general-purpose register.

® Index—The value in a general-purpose register.

® Scale factor—A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these components is called an effective address. Each of
these components can have either a positive or negative (2s complement) value, with the excep-
tion of the scaling factor. Figure 3-9 shows all the possible ways that these components can be
combined to create an effective address in the selected segment.

3-20

Intelo BASIC EXECUTION ENVIRONMENT

Base Index Scale Displacement
EAX
EBX EAX 1 None
EBX
ECX .
EDX ECX 2 8-bit
ESP + EDX | % +
EBP 4 16-bit
EBP
ESI .
ESI EDI 8 32-bit
EDI

Offset = Base + (Index * Scale) + Displacement

Figure 3-9. Offset (or Effective Address) Computation

The uses of general-purpose registers as base or index components are restricted in the following
manner:

® The ESP register cannot be used as an index register.

® When the ESP or EBP register is used as the base, the SS segment is the default segment.
In all other cases, the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and any of these
components can be null. A scale factor may be used only when an index also is used. Each
possible combination is useful for data structures commonly used by programmers in high-level
languages and assembly language. The following addressing modes suggest uses for common
combinations of address components.

Displacement

A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an abso-
lute or static address. It is commonly used to access a statically allocated scalar operand.

Base

A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

Base + Displacement
A base register and a displacement can be used together for two distinct purposes:

® As anindex into an array when the element size is not 2, 4, or 8 bytes—The displacement
component encodes the static offset to the beginning of the array. The base register holds
the results of a calculation to determine the offset to a specific element within the array.

® To access a field of a record—The base register holds the address of the beginning of the
record, while the displacement is an static offset to the field.

3-21

BASIC EXECUTION ENVIRONMENT Intel®

An important special case of this combination is access to parameters in a procedure activation
record. A procedure activation record is the stack frame created when a procedure is entered.
Here, the EBP register is the best choice for the base register, because it automatically selects
the stack segment. This is a compact encoding for this common function.

(Index = Scale) + Displacement

This address mode offers an efficient way to index into a static array when the element size is 2,
4, or 8 bytes. The displacement locates the beginning of the array, the index register holds the
subscript of the desired array element, and the processor automatically converts the subscript
into an index by applying the scaling factor.

Base + Index + Displacement

Using two registers together supports either a two-dimensional array (the displacement holds the
address of the beginning of the array) or one of several instances of an array of records (the
displacement is an offset to a field within the record).

Base + (Index * Scale) + Displacement

Using all the addressing components together allows efficient indexing of a two-dimensional
array when the elements of the array are 2, 4, or 8 bytes in size.

3.7.3.3. ASSEMBLER AND COMPILER ADDRESSING MODES

At the machine-code level, the selected combination of displacement, base register, index
register, and scale factor is encoded in an instruction. All assemblers permit a programmer to
use any of the allowable combinations of these addressing components to address operands.
High-level language compilers will select an appropriate combination of these components
based on the language construct a programmer defines.

3.7.4. 1/0O Port Addressing

The processor supports an I/0 address space that contains up to 65,536 8-bit I/O ports. Ports that
are 16-bit and 32-bit may also be defined in the I/O address space. An I/O port can be addressed
with either an immediate operand or a value in the DX register. See Chapter 12, Input/Output,
for more information about I/O port addressing.

3-22

Data Types

CHAPTER 4
DATA TYPES

This chapter introduces IA-32 architecture defined data types. A section at the end of this
chapter describes the real-number and floating-point concepts used in the x87 FPU and the SSE
and SSE2 extensions.

4.1. FUNDAMENTAL DATA TYPES

The fundamental data types of the IA-32 architecture are bytes, words, doublewords, quad-
words, and double quadwords (see Figure 4-1). A byte is eight bits, a word is 2 bytes (16 bits),
a doubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits), and a double quadword is
16 bytes (128 bits). A subset of the IA-32 architecture instructions operates on these funda-
mental data types without any additional operand typing.

7 0
o
N

15 87 0
Word
N+1 N
31 16 15 0
I High Word | Low Word l Doubleword
N+2 N
63 32 31 0
I High Doubleword I Low Doubleword l Quadword
N+4 N
127 64 63 0
High Quadword | Low Quadword gﬁgzlﬁor d
N+8 N

Figure 4-1. Fundamental Data Types

The quadword data type was introduced into the IA-32 architecture in the Intel486 processor;
the double quadword data type was introduced in the Pentium Ill processor with the SSE exten-
sions.

Figure 4-2 shows the byte order of each of the fundamental data types when referenced as oper-
ands in memory. The low byte (bits 0 through 7) of each data type occupies the lowest address
in memory and that address is also the address of the operand.

DATA TYPES I nte| ®

12H EH A
7AH DH
Word at Address BH FEH CH Doubleword at Address AH
Contains FEO6H 06H BH Contains 7AFE0636H
36H AH
Byte at Address 9H — 1FH oH
Contains 1FH __ Quadword at Address 6H
f A4H 8H Contains
A 7AFE06361FA4230BH
Word at Address 6H 23H 7H
Contains 230BH 0BH 6H
45H 5H
67H 4H
Word at Address 2H e
Contains 74CBH i 74H SH
Double quadword at Address OH
Word at Address 1H AN CBH 2H Containg
Contains CB31H 31H 1H | 127AFE06361FA4230B456774CB3112H
12H OH Y

Figure 4-2. Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory

41.1. Alignment of Words, Doublewords, Quadwords, and
Double Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural bound-
aries. (The natural boundaries for words, double words, and quadwords are even-numbered
addresses, addresses evenly divisible by four, and addresses evenly divisible by eight, respec-
tively.) However, to improve the performance of programs, data structures (especially stacks)
should be aligned on natural boundaries whenever possible. The reason for this is that the
processor requires two memory accesses to make an unaligned memory access; whereas,
aligned accesses require only one memory access. A word or doubleword operand that crosses
a 4-byte boundary or a quadword operand that crosses an 8-byte boundary is considered
unaligned and requires two separate memory bus cycles to access it.

Some instructions that operate on double quadwords require memory operands to be aligned on
a natural boundary. These instructions generate a general-protection exception (#GP) if an
unaligned operand is specified. A natural boundary for a double quadword is any address evenly
divisible by 16. Other instructions that operate on double quadwords permit unaligned access
(without generating a general-protection exception), however, additional memory bus cycles are
required to access unaligned data from memory.

4-2

Intel ® DATA TYPES

4.2. NUMERIC DATA TYPES

Although bytes, words, and doublewords are the fundamental data types of the IA-32 architec-
ture, some instructions support additional interpretations of these data types to allow operations
to be performed on numeric data types (signed and unsigned integers, and floating-point
numbers). See Figure 4-3.

|:I Byte Unsigned Integer
|:| Word Unsigned Integer

Doubleword Unsigned Integer

Quadword Unsigned Integer

0
|
0
|
0
Sign
D:l Byte Signed Integer

Sign
Word Signed Integer

D

15 14 0
Sign

3130 0

Doubleword Signed Integer

Sign

63 62

Quadword Signed Integer

o

Sign

Single Precision
Floating Point

|

3130 2322

oL

Sign

63 62 52 51

Double Precision
Floating Point

oLl

Sign Integer Bit .
I ‘ | ‘ | Double Extended Precision
Floating Point

7978 646362 0

Figure 4-3. Numeric Data Types

4-3

DATA TYPES I nte| ®

4.2.1. Integers

The TA-32 architecture defines two typed of integers: unsigned and signed. Unsigned integers
are ordinary binary values ranging from 0 to the maximum positive number that can be encoded
in the selected operand size. Signed integers are two’s complement binary values that can be
used to represent both positive and negative integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions) operate
on either unsigned or signed integer operands. Other integer instructions (such as IMUL, MUL,
IDIV, DIV, FIADD, and FISUB) operate on only one integer type.

The following sections describe the encodings and ranges of the two types of integers.

4.21.1. UNSIGNED INTEGERS

Unsigned integers are unsigned binary numbers contained in a byte, word, doubleword, and
quadword. Their values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for an
unsigned word integer, from 0 to 2*2 — 1 for an unsigned doubleword integer, and from 0 to 26 —
1 for an unsigned quadword integer. Unsigned integers are sometimes referred to as ordinals.

4.2.1.2, SIGNED INTEGERS

Signed integers are signed binary numbers held in a byte, word, doubleword, or quadword. All
operations on signed integers assume a two's complement representation. The sign bit is located
in bit 7 in a byte integer, bit 15 in a word integer, bit 31 in a doubleword integer, and bit 63 in a
quadword integer (see the signed integer encodings in Table 4-1).

Table 4-1. Signed Integer Encodings

Class Two’s Complement Encoding
Sign
Positive Largest 0 11..11
Smallest 0 00..01
Zero 0 00..00
Negative Smallest 1 11..11
Largest 1 00..00
Integer indefinite 1 00..00
Signed Byte Integer: £— 7 bits —
Signed Word Integer: <— 15 bits —
Signed Doubleword Integer: < 31 Bits >
Signed Quadword Integer: <— 63 Bits —

4-4

Intel ® DATA TYPES

The sign bit is set for negative integers and cleared for positive integers and zero. Integer values
range from —128 to +127 for a byte integer, from 32,768 to +32,767 for a word integer, from —
23! to +23! — 1 for a doubleword integer, and from —2% to +2%% — 1 for a quadword integer.

When storing integer values in memory, word integers are stored in 2 consecutive bytes; double-
word integers are stored in 4 consecutive bytes; and quadword integers are stored in 8 consecu-
tive bytes.

The integer indefinite is a special value that is sometimes returned by the x87 FPU when oper-
ating on integer values (see Section 8.2.1., “Indefinites”).

4.2.2. Floating-Point Data Types

The TA-32 architecture defines and operates on three floating-point data types: single-precision
floating-point, double-precision floating-point, and double-extended precision floating-point
(see Figure 4-3). The data formats for these data types correspond directly to formats specified
in the IEEE Standard 754 for Binary Floating-Point Arithmetic. Table 4-2 gives the length,
precision, and approximate normalized range that can be represented of each of these data types.
Denormal values are also supported in each of these types.

Table 4-2. Length, Precision, and Range of Floating-Point Data Types

Data Type Length | Precision Approximate Normalized Range
(Bits) . R
Binary Decimal
Single Precision 32 24 27126 tg 2127 1.18 x 10738 to 3.40 x 1038
Double Precision 64 53 271022 4g 1023 2.23x 1073 t0 1.79 x 10°%08
Double Extended Precision 80 64 2716382 tg 016383 3.37 x 1074932 10 1.18 x 10%9%2
NOTE

Section 4.8., “Real Numbers and Floating-Point Formats™ gives an overview
of the IEEE Standard 754 floating-point formats and defines the terms integer
bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers, normal-
ized finite numbers, infinites, and NaNs for each of the three floating-point data types. It also
gives the format for the QNaN floating-point indefinite value. (See Section 4.8.3.7., “QNaN
Floating-Point Indefinite” for a discussion of the use of the QNaN floating-point indefinite
value.)

For the single-precision and double-precision formats, only the fraction part of the significand
is encoded. The integer is assumed to be 1 for all numbers except 0 and denormalized finite
numbers. For the double extended-precision format, the integer is contained in bit 63, and the
most-significant fraction bit is bit 62. Here, the integer is explicitly set to 1 for normalized
numbers, infinities, and NaNs, and to O for zero and denormalized numbers.

4-5

intel.

DATA TYPES
Table 4-3. Floating-Point Number and NaN Encodings
Class Sign Biased Exponent Significand
Integer’ Fraction
Positive +oo 0 11..11 1 00..00
+Normals 0 11..10 1 11..11
0 00..01 1 00..00
+Denormals 0 00..00 0 1.1
0 00..00 0 00..01
+Zero 0 00..00 0 00..00
Negative —Zero 1 00..00 0 00..00
—Denormals 1 00..00 0 00..01
1 00..00 0 11,11
—Normals 1 00..01 1 00..00
1 11.10 1 11,11
—oo 1 11..11 1 00..00
NaNs SNaN X 11..11 1 0X..XX?
QNaN X 11..11 1 1X..XX
QNaN 1 11..11 1 10..00
Floating-Point
Indefinite
Single-Precision: <— 8 Bits —> <— 23 Bits —>
Double-Precision: < 11 Bits — <— 52 Bits —
Double Extended-Precision: <— 15 Bits — <— 63 Bits —

NOTES:

1. Integer bit is implied and not stored for single-precision and double-precision formats.

2. The fraction for SNaN encodings must be non-zero with the most-significant bit 0.

The exponent of each floating-point data type is encoded in biased format (see Section 4.8.2.2.,
“Biased Exponent”). The biasing constant is 127 for the single-precision format, 1023 for the
double-precision format, and 16,383 for the double extended-precision format.

When storing floating-point values in memory, single-precision values are stored in 4 consecu-
tive bytes in memory; double-precision values are stored in 8 consecutive bytes; and double

extended-precision values are stored in 10 consecutive bytes.

4-6

Intel ® DATA TYPES

The single-precision and double-precision floating-point data types are operated on by x87 FPU,
SSE, and SSE2 instructions. The double-extended-precision floating-point format is only oper-
ated on by the x87 FPU. See Section 11.6.8., “Compatibility of SIMD and x87 FPU Floating-
Point Data Types” for a discussion of the compatibility of single-precision and double-precision
floating-point data types between the x87 FPU and the SSE and SSE2 extensions.

4.3. POINTER DATA TYPES

Pointers are addresses of locations in memory (see Figure 4-4). The IA-32 architecture defines
two types of pointers: a near pointer (32 bits) and a far pointer (48 bits). A near pointer is a
32-bit offset (also called an effective address) within a segment. Near pointers are used for all
memory references in a flat memory model or for references in a segmented model where the
identity of the segment being accessed is implied. A far pointer is a 48-bit logical address,
consisting of a 16-bit segment selector and a 32-bit offset. Far pointers are used for memory
references in a segmented memory model where the identity of a segment being accessed must
be specified explicitly.

Near Pointer
Offset
31 0

Far Pointer or Logical Address

Segment Selector | Offset
47 32 31 0

Figure 4-4. Pointer Data Types

4.4. BIT FIELD DATA TYPE

A bit field (see Figure 4-5) is a contiguous sequence of bits. It can begin at any bit position of
any byte in memory and can contain up to 32 bits.

Bit Field

| |
F Field Length —4

Least
Significant
Bit

Figure 4-5. Bit Field Data Type

DATA TYPES I nte| ®

4.5. STRING DATA TYPES

Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin
at any bit position of any byte and can contain up to 22— 1 bits. A byte string can contain bytes,
words, or doublewords and can range from zero to 2*2— 1 bytes (4GBytes).

4.6. PACKED SIMD DATA TYPES

IA-32 architecture defines and operates on a set of 64-bit and 128-bit packed data type for use
in SIMD operations. These data types consist of fundamental data types (packed bytes, words,
doublewords, and quadwords) and numeric interpretations of fundamental types for use in
packed integer and packed floating-point operations.

4.6.1. 64-Bit SIMD Packed Data Types

The 64-bit packed SIMD data types were introduced into the IA-32 architecture in the Intel
MMX technology. They are operated on primarily in the 64-bit MMX registers. The funda-
mental 64-bit packed data types are packed bytes, packed words, and packed doublewords (see
Figure 4-6). When performing numeric SIMD operations on these data types in MMX registers,
these data types are interpreted as containing byte, word, or doubleword integer values.

Fundamental 64-Bit Packed SIMD Data Types

| | | | | | | | | Packed Bytes

63 0

| | | | | Packed Words

63 0

| | | Packed Doublewords

63 0

64-Bit Packed Integer Data Types

C T T T T T T T] rackedByteintegers

63 0

| | | | | Packed Word Integers

63 0

| I I Packed Doubleword Integers

63 0

Figure 4-6. 64-Bit Packed SIMD Data Types

4-8

"Ttel ® DATA TYPES

4.6.2. 128-Bit Packed SIMD Data Types

The 128-bit packed SIMD data types were introduced into the IA-32 architecture in the SSE
extensions and extended with the SSE2 extensions. They are operated on primarily in the 128-bit
XMM registers and memory. The fundamental 128-bit packed data types are packed bytes,
packed words, packed doublewords, and packed quadwords (see Figure 4-7). When performing
SIMD operations on these fundamental data types in XMM registers, these data types are inter-
preted as containing packed or scalar single-precision floating-point or double-precision
floating-point values, or as containing packed byte, word, doubleword, or quadword integer
values.

Fundamental 128-Bit Packed SIMD Data Types

] 0 A g -t

| | | | | | | | | Packed Words

| I | | | Packed Doublewords

| | | Packed Quadwords

128-Bit Packed Floating-Point and Integer Data Types

| | | Packed Single Precision
Floating Point

127 0
| | | Packed Double Precision
Floating Point
127 0
| | | | | | | | | | | | | | | | | Packed Byte Integers
127 0
| | | | | | | | | Packed Word Integers
127 0
Packed Doubleword Integers
I I I I | g
127 0
Packed Quadword Integers
I [| g
127 0

Figure 4-7. 128-Bit Packed SIMD Data Types

4-9

DATA TYPES I nte| ®

4.7. BCD AND PACKED BCD INTEGERS

Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid values
ranging from O to 9. IA-32 architecture defines operations on BCD integers located in one or
more general-purpose registers or in one or more x87 FPU registers (see Figure 4-8).

BCD Integers

7 43 0

Packed BCD Integers

7 43 0

Sign 80-Bit Packed BCD Decimal Integers
[[x [p17 D16 D15 D14 D13 D12 D11,D10, D9, 6 D8, 6 D7 D6 D5 D4 D3 D2, D1 DO |
7978 7271 0
4 Bits = 1 BCD Digit

Figure 4-8. BCD Data Types

When operating BCD integers in general-purpose registers, the BCD values can be unpacked
(one BCD digit per byte) or packed (two BCD digits per byte). The value of an unpacked BCD
integer is the binary value of the low half-byte (bits O through 3). The high half-byte (bits 4
through 7) can be any value during addition and subtraction, but must be zero during multipli-
cation and division. Packed BCD integers allow two BCD digits to be contained in one byte.
Here, the digit in the high half-byte is more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, the BCD values are packed in an
80-bit format and referred to as decimal integers. Decimal integers are stored in a 10-byte,
packed BCD format. In this format, the first 9 bytes hold 18 BCD digits, 2 digits per byte. The
least-significant digit is contained in the lower half-byte of byte 0 and the most-significant digit
is contained in the upper half-byte of byte 9. The most significant bit of byte 10 contains the sign
bit (0 = positive and 1 = negative). (Bits O through 6 of byte 10 are don’t care bits.) Negative
decimal integers are not stored in two's complement form; they are distinguished from positive
decimal integers only by the sign bit. The range of decimal integers that can be encoded in this
format is 10" + 1 t0 10'® - 1.

The decimal integer format exists in memory only. When a decimal integer is loaded in an x87
FPU data register, it is automatically converted to the double-extended-precision floating-point
format. All decimal integers are exactly representable in double extended-precision format.

Decimal integers are stored in a 10-byte, packed BCD format. Table 4-2 gives the precision and
range of this data type and Figure 4-8 shows the format. In this format, the first 9 bytes hold 18
BCD digits, 2 digits per byte. The least-significant digit is contained in the lower half-byte of
byte 0 and the most-significant digit is contained in the upper half-byte of byte 9. The most
significant bit of byte 10 contains the sign bit (0 = positive and 1 = negative).

4-10

Intel ® DATA TYPES

(Bits 0 through 6 of byte 10 are don’t care bits.) Negative decimal integers are not stored in two's
complement form; they are distinguished from positive decimal integers only by the sign bit.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

Table 4-4. Packed Decimal Integer Encodings

Magnitude
Class | Sign digit | digit | digit | digit | .. | digit

Positive

Largest 0 0000000 1001 1001 1001 1001 1001
Smallest 0 0000000 0000 0000 0000 0000 0001
Zero 0 0000000 0000 0000 0000 0000 0000
Negative

Zero 1 0000000 0000 0000 0000 0000 0000
Smallest 1 0000000 0000 0000 0000 0000 0001
Largest 1 0000000 1001 1001 1001 1001 1001
Packed 1 111111 1111 1111 1100 0000 0000
BCD

Integer

Indefinite

< 1 byte = <— 9 bytes —

The decimal integer format exists in memory only. When a decimal integer is loaded in a data
register in the x87 FPU, it is automatically converted to the double extended-precision format.
All decimal integers are exactly representable in double extended-precision format.

The packed BCD integer indefinite encoding (FFFFC000000000000000H) is stored by the
FBSTP instruction in response to a masked floating-point invalid-operation exception.
Attempting to load this value with the FBLD instruction produces an undefined result.

4.8. REAL NUMBERS AND FLOATING-POINT FORMATS

This section describes how real numbers are represented in floating-point format in the x87 FPU
and the SSE and SSE2 floating-point instructions. It also introduces terms such as normalized
numbers, denormalized numbers, biased exponents, signed zeros, and NaNs. Readers who are
already familiar with floating-point processing techniques and the IEEE Standard 754 for
Binary Floating-Point Arithmetic may wish to skip this section.

DATA TYPES I nte| ®

4.8.1. Real Number System

As shown in Figure 4-9, the real-number system comprises the continuum of real numbers from
minus infinity (—eo) to plus infinity (+eo).

Because the size and number of registers that any computer can have is limited, only a subset of
the real-number continuum can be used in real-number (floating-point) calculations. As shown
at the bottom of Figure 4-9, the subset of real numbers that the IA-32 architecture supports repre-
sents an approximation of the real number system. The range and precision of this real-number
subset is determined by the IEEE Standard 754 floating-point formats.

4.8.2. Floating-Point Format

To increase the speed and efficiency of real-number computations, computers and microproces-
sors typically represent real numbers in a binary floating-point format. In this format, a real
number has three parts: a sign, a significand, and an exponent (see Figure 4-10).

The sign is a binary value that indicates whether the number is positive (0) or negative (1).
The significand has two parts: a 1-bit binary integer (also referred to as the J-bit) and a binary
fraction. The integer-bit is often not represented, but instead is an implied value. The exponent
is a binary integer that represents the base-2 power that the significand is multiplied by.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored in IEEE
Standard 754 floating-point format. The table lists a progression of real number notations that
leads to the single-precision, 32-bit floating-point format. In this format, the significand is
normalized (see Section 4.8.2.1., “Normalized Numbers”) and the exponent is biased (see
Section 4.8.2.2., “Biased Exponent”). For the single-precision floating-point format, the biasing
constant is +127.

4-12

Intel ® DATA TYPES

Binary Real Number System

-100 -10 10 1 10 100
| I [T |

- CC C—
& T T T T T T T <

Subset of binary real-numbers that can be represented with
IEEE single-precision (32-bit) floating-point format
-100 -10 -1 0 1 10 100

B [e e PP [T IR |

S S S

'_'L 10.0000000000000000000000

1.11111111111111111111111
Precision | <«— 24 Binary Digits ——»

Numbers within this range
cannot be represented.

Figure 4-9. Binary Real Number System

Sign

H Exponent l Significand ‘

=

I l Fraction ‘

Integer or J-Bit -/4

Figure 4-10. Binary Floating-Point Format

4-13

DATA TYPES I nte| ®

Table 4-5. Real and Floating-Point Number Notation

Notation Value
Ordinary Decimal 178.125
Scientific Decimal 1.78125E,,2
Scientific Binary 1.0110010001E,111
Scientific Binary 1.0110010001E,10000110
(Biased Exponent)
IEEE Single-Precision Format | Sign Biased Exponent Normalized Significand
0 10000110 01100100010000000000000
L - 1. (Implied)

4.8.2.1. NORMALIZED NUMBERS

In most cases, floating-point numbers are encoded in normalized form. This means that except
for zero, the significand is always made up of an integer of 1 and the following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the expo-
nent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of a normalized significand that represents a real number between 1 and 2 and an expo-
nent that specifies the number’s binary point.

4.8.2.2. BIASED EXPONENT

In the TA-32 architecture, the exponents of floating-point numbers are encoded in a biased form.
This means that a constant is added to the actual exponent so that the biased exponent is always
a positive number. The value of the biasing constant depends on the number of bits available for
representing exponents in the floating-point format being used. The biasing constant is chosen
so that the smallest normalized number can be reciprocated without overflow.

(See Section 4.2.2., “Floating-Point Data Types” for a list of the biasing constants that the IA-32
architecture uses for the various sizes of floating-point data-types.)

4.8.3. Real Number and Non-number Encodings

A variety of real numbers and special values can be encoded in the IEEE Standard 754 floating-
point format. These numbers and values are generally divided into the following classes:

® Signed zeros.

® Denormalized finite numbers.

4-14

Intel ® DATA TYPES

® Normalized finite numbers.

® Signed infinities.

® NaNs.

® Indefinite numbers.

(The term NaN stands for “Not a Number.”)

Figure 4-11 shows how the encodings for these numbers and non-numbers fit into the real
number continuum. The encodings shown here are for the IEEE single-precision floating-point
format. The term “S” indicates the sign bit, “E” the biased exponent, and “Sig” the significand.
The exponent values are given in decimal. The integer bit is shown for the significands, even
though the integer bit is implied in single-precision floating-point format.

NaN NaN
—Denormalized Finite +Denormalized Finite
—oo —Normalized Finite 1\ —]0]+O] . +Normalized Finite too
T T T T T T T T 1
Real Number and NaN Encodings For 32-Bit Floating-Point Format
S E Sig' S E Sig'
[1] o [0.000.. |-0 +0[o] o [0.000..]
|1| 0 | O.XXX..2 |—I|Z:)i$]rilt%rmalized +Denorm£|:1:Iiiﬁﬁg|0| 0 | 0.XXX..2 l
[1]1..254] 1.XXX... | ~Normalized +Normalized (6T 554T 1 XXX... |
[1] 255 [1.000... | - +oo [0] 255 | 1.000...]
X 255 [1.0XX..2 | SNaN SNaN[x¥ 255 [1.0XX..2 |
IxJ 255 | 1.1XX... | QNaN QNaN [x§ 255 | 1.1XX... |

NOTES:

1. Integer bit of fraction implied for
single-precision floating-point format.

2. Fraction must be non-zero.

3. Sign bit ignored.

Figure 4-11. Real Numbers and NaNs

An TA-32 processor can operate on and/or return any of these values, depending on the type of
computation being performed. The following sections describe these number and non-number
classes.

4-15

DATA TYPES I nte| ®

4.8.3.1. SIGNED ZEROS

Zero can be represented as a +0 or a —0 depending on the sign bit. Both encodings are equal in
value. The sign of a zero result depends on the operation being performed and the rounding
mode being used. Signed zeros have been provided to aid in implementing interval arithmetic.
The sign of a zero may indicate the direction from which underflow occurred, or it may indicate
the sign of an o that has been reciprocated.

4.8.3.2. NORMALIZED AND DENORMALIZED FINITE NUMBERS

Non-zero, finite numbers are divided into two classes: normalized and denormalized. The
normalized finite numbers comprise all the non-zero finite values that can be encoded in a
normalized real number format between zero and eo. In the single-precision floating-point
format shown in Figure 4-11, this group of numbers includes all the numbers with biased expo-
nents ranging from 1 to 254,, (unbiased, the exponent range is from —126,, to +127,,).

When floating-point numbers become very close to zero, the normalized-number format can no
longer be used to represent the numbers. This is because the range of the exponent is not large
enough to compensate for shifting the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range are
called denormalized (or tiny) numbers. The use of leading zeros with denormalized numbers
allows smaller numbers to be represented. However, this denormalization causes a loss of preci-
sion (the number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, an IA-32 processor normally oper-
ates on normalized numbers and produces normalized numbers as results. Denormalized
numbers represent an underflow condition (where, the exact conditions are specified in Section
4.9.1.5., “Numeric Underflow Exception (#U)”).

A denormalized number is computed through a technique called gradual underflow. Table 4-6
gives an example of gradual underflow in the denormalization process. Here the single-precision
format is being used, so the minimum exponent (unbiased) is —126,,. The true result in this
example requires an exponent of —129,,in order to have a normalized number. Since —129,,
is beyond the allowable exponent range, the result is denormalized by inserting leading zeros
until the minimum exponent of —126,, is reached.

Table 4-6. Denormalization Process

Operation Sign Exponent* Significand
True Result 0 -129 1.01011100000...00
Denormalize 0 -128 0.10101110000...00
Denormalize 0 -127 0.01010111000...00
Denormalize 0 -126 0.00101011100...00
Denormal Result 0 -126 0.00101011100...00

NOTE:
* Expressed as an unbiased, decimal number.

4-16

Intel ® DATA TYPES

In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
a zero result.

The IA-32 architecture deals with denormal values in the following ways:
® It avoids creating denormals by normalizing numbers whenever possible.

® It provides the floating-point underflow exception to permit programmers to detect cases
when denormals are created.

® It provides the floating-point denormal-operand exception to permit procedures or
programs to detect when denormals are being used as source operands for computations.

4.8.3.3. SIGNED INFINITIES

The two infinities, +eo and —oo, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-point format. Infinity is always represented
by a significand of 1.00...00 (the integer bit may be implied) and the maximum biased exponent
allowed in the specified format (for example, 255,, for the single-precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are always inter-
preted in the affine sense; that is, —o is less than any finite number and +oo is greater than any
finite number. Arithmetic on infinities is always exact. Exceptions are generated only when the
use of an infinity as a source operand constitutes an invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two e numbers may
represent the result of an overflow condition. Here, the normalized result of a computation has
a biased exponent greater than the largest allowable exponent for the selected result format.

4.8.3.4. NANS

Since NaNs are non-numbers, they are not part of the real number line. In Figure 4-11, the
encoding space for NaNs in the floating-point formats is shown above the ends of the real
number line. This space includes any value with the maximum allowable biased exponent and
a non-zero fraction. (The sign bit is ignored for NaNs.)

The IA-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and signaling NaN's
(SNaNs). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN with
the most significant fraction bit clear. QNaNs are allowed to propagate through most arithmetic
operations without signaling an exception. SNaNs generally signal an floating-point invalid-
operation exception whenever they appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be inserted by soft-
ware; that is, the processor never generates an SNaN as a result of a floating-point operation.

intel.

DATA TYPES

4.8.3.5. OPERATING ON SNANS AND QNANS

When a floating-point operation is performed on an SNaN and/or a QNaN, the result of the oper-
ation is either a QNaN delivered to the destination operand or the generation of a floating-point
invalid operating exception, depending on the following rules:

® If one of the source operands is an SNaN and the floating-point invalid-operating
exception is not masked (see Section 4.9.1.1., “Invalid Operation Exception (#I)”), the a
floating-point invalid-operation exception is signaled and no result is stored in the
destination operand.

® If either or both of the source operands are NaNs and floating-point invalid-operation
exception is masked, the result is as shown in Table 4-7. When an SNaN is converted to a
QNaN, the conversion is handled by setting the most-significant fraction bit of the SNaN
to 1. Also, when one of the source operands is an SNaN, the floating-point invalid-
operation exception flag it set. Note that for some combinations of source operands, the
result is different for the x87 FPU operations and for the SSE or SSE2 operations.

Table 4-7. Rules for Handling NaNs
Source Operands Resultt

SNaN and QNaN. x87 FPU—QNaN source operand.

SSE or SSE2—First operand (if this operand is an
SNaN, it is converted to a QNaN)

Two SNaNs. x87 FPU—SNaN source operand with the larger
significand, converted into a QNaN.
SSE or SSE2—First operand converted to a QNaN.
Two QNaNs. x87 FPU—QNaN source operand with the larger

significand.
SSE or SSE2—First operand.

SNaN and a floating-point value.

SNaN source operand, converted into a QNaN.

QNaN and a floating-point value.

QNaN source operand.

SNaN (for instructions that take only one
operand)

SNaN source operand, converted into a QNaN.

QNaN (for instructions that take only one

QNaN source operand.

operand)

Note:

1 For SSE and SSE2 instructions, the first operand is generally a source operand that becomes the desti-
nation operand.

® When neither of the source operands is a NaN, but the operation generates a floating-point
invalid-operation exception (see Tables 8-10 and 11-1), the result is commonly an SNaN
source operand converted to a QNaN or the QNaN floating-point indefinite value.

Any exceptions to the behavior described in Table 4-7 are described in Section 8.5.1.2., “Invalid
Arithmetic Operand Exception (#IA)” and Section 11.5.2.1., “Invalid Operation Exception
(#D)”.

4-18

Intel ® DATA TYPES

4.8.3.6. USING SNANS AND QNANS IN APPLICATIONS

Except for the rules given at the beginning of Section 4.8.3.4., “NaNs” for encoding SNaNs and
QNaNs, software is free to use the bits in the significand of a NaN for any purpose. Both SNaNs
and QNaNs can be encoded to carry and store data, such as diagnostic information.

By unmasking the invalid operation exception, the programmer can use signaling NaNs to trap
to the exception handler. The generality of this approach and the large number of NaN values
that are available provide the sophisticated programmer with a tool that can be applied to a
variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real) array
elements. The compiler can preinitialize each array element with a signaling NaN whose signif-
icand contained the index (relative position) of the element. Then, if an application program
attempts to access an element that it had not initialized, it can use the NaN placed there by the
compiler. If the invalid operation exception is unmasked, an interrupt will occur, and the excep-
tion handler will be invoked. The exception handler can determine which element has been
accessed, since the operand address field of the exception pointer will point to the NaN, and the
NaN will contain the index number of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a program often
contains multiple errors. An exception handler can be written to save diagnostic information in
memory whenever it was invoked. After storing the diagnostic data, it can supply a quiet NaN
as the result of the erroneous instruction, and that NaN can point to its associated diagnostic area
in memory. The program will then continue, creating a different NaN for each error. When the
program ends, the NaN results can be used to access the diagnostic data saved at the time the
errors occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications which use computed results in further computations, an undetected
QNaN can invalidate all subsequent results. Such applications should therefore periodically
check for QNaNs and provide a recovery mechanism to be used if a QNaN result is detected.

4.8.3.7. QNAN FLOATING-POINT INDEFINITE

For the floating-point data type encodings (single-precision, double-precision, and double-
extended-precision), one unique encoding (a QNaN) is reserved for representing the special
value QNaN floating-point indefinite. The x87 FPU and the SSE and SSE2 extensions return
these indefinite values as responses to some masked floating-point exceptions. Table 4-3 shows
the encoding used for the QNaN floating-point indefinite.

4.8.4. Rounding

When performing floating-point operations, the processor produces an infinitely precise
floating-point result in the destination format (single-precision, double-precision, or double
extended-precision floating-point) whenever possible. However, because only a subset of the
numbers in the real number continue can be represented in IEEE Standard 754 floating-point
formats, it is often the case that an infinitely precise result cannot be encoded exactly in the
format of the destination operand.

4-19

DATA TYPES I nte| ®

For example, the following value (a) has a 24-bit fraction. The least-significant bit of this frac-
tion (the underlined bit) cannot be encoded exactly in the single-precision format (which has
only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E, 101

To round this result (a), the processor first selects two representable fractions b and ¢ that most
closely bracket a in value (b < a < c¢).

(b) 1.0001 0000 1000 0011 1001 O11E, 101
(¢) 1.0001 0000 1000 0011 1001 100E, 101
The processor then sets the result to b or to ¢ according to the selected rounding mode. Rounding

introduces an error in a result that is less than one unit in the last place (the least significant bit
position of the floating-point value) to which the result is rounded.

The IEEE Standard 754 defines four rounding modes (see Table 4-8): round to nearest, round
up, round down, and round toward zero. The default rounding mode for the IA-32 architecture
is round to nearest. This mode provides the most accurate and statistically unbiased estimate of
the true result and is suitable for most applications.

Table 4-8. Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding RC Field
Mode Setting Description
Round to 00B Rounded result is the closest to the infinitely precise result. If two values
nearest (even) are equally close, the result is the even value (that is, the one with the
least-significant bit of zero). Default
Round down 01B Rounded result is closest to but no greater than the infinitely precise
(toward —eo) result.
Round up 10B Rounded result is closest to but no less than the infinitely precise result.
(toward +eo)
Round toward 11B Rounded result is closest to but no greater in absolute value than the
zero (Truncate) infinitely precise result.

The round up and round down modes are termed directed rounding and can be used to imple-
ment interval arithmetic. Interval arithmetic is used to determine upper and lower bounds for the
true result of a multistep computation, when the intermediate results of the computation are
subject to rounding.

The round toward zero mode (sometimes called the “chop” mode) is commonly used when
performing integer arithmetic with the x87 FPU.

The rounded result is called the inexact result. When the processor produces an inexact result,
the floating-point precision (inexact) flag (PE) is set (see Section 4.9.1.6., “Inexact-Result
(Precision) Exception (#P)”).

The rounding modes have no effect on comparison operations, operations that produce exact
results, or operations that produce NaN results.

4-20

Intel ® DATA TYPES

4.8.4.1. ROUNDING CONTROL (RC) FIELDS

In the IA-32 architecture, the rounding mode is controlled by a 2-bit rounding-control (RC) field
(Table 4-8 shows the encoding of this field). The RC field is implemented in two different loca-
tions:

¢ x87 FPU control register (bits 10 and 11).
® The MXCSR register (bits 13 and 14).

Although these two RC fields perform the same function, they control rounding for different
execution environments within the processor. The RC field in the x87 FPU control register
controls rounding for computations performed with the x87 FPU instructions; the RC field in
the MXCSR register controls rounding for SIMD floating-point computations performed with
the SSE and SSE2 instructions.

4.8.4.2. TRUNCATION WITH SSE AND SSE2 CONVERSION INSTRUCTIONS

The following SSE and SSE2 instructions automatically truncate the results of conversions from
floating-point values to integers when the result it inexact: CVTTPD2DQ, CVTTPS2DQ,
CVTTPD2PI, CVTTPS2PI, CVTTSD2SI, CVTTSS2SI. Here, truncation means the round
toward zero mode described in Table 4-8.

4.9. OVERVIEW OF FLOATING-POINT EXCEPTIONS

The following section provides an overview of floating-point exceptions and their handling in
the IA-32 architecture. For information specific to the x87 FPU and to the SSE and SSE2 exten-
sions, refer to the following sections:

® Section 8.4., “x87 FPU Floating-Point Exception Handling”.
® Section 11.5., “SSE and SSE2 Exceptions”.

When operating on floating-point operands, the IA-32 architecture recognizes and detects six
classes of exception conditions:

® Invalid operation (#I)

® Divide-by-zero (#7Z)

® Denormalized operand (#D)
® Numeric overflow (#0)

® Numeric underflow (#U)

® Inexact result (precision) (#P)

The nomenclature of “#” symbol followed by one or two letters (for example, #P) is used in this
manual to indicate exception conditions. It is merely a short-hand form and is not related to
assembler mnemonics.

4-21

DATA TYPES I nte| ®

NOTE

All of the exceptions listed above except the denormal-operand exception
(#D) are defined in IEEE Standard 754.

The invalid-operation, divide-by-zero and denormal-operand exceptions are pre-computation
exceptions (that is, they are detected before any arithmetic operation occurs). The numeric-
underflow, numeric-overflow and precision exceptions are post-computation exceptions.

Each of the six exception classes has a corresponding flag bit (IE, ZE, OE, UE, DE, or PE) and
mask bit (IM, ZM, OM, UM, DM, or PM). When one or more floating-point exception condi-
tions are detected, the processor sets the appropriate flag bits, then takes one of two possible
courses of action, depending on the settings of the corresponding mask bits:

® Mask bit set. Handles the exception automatically, producing a predefined (and often times
usable) result, while allowing program execution to continue undisturbed.

® Mask bit clear. Invokes a software exception handler to handle the exception.

The masked (default) responses to exceptions have been chosen to deliver a reasonable result
for each exception condition and are generally satisfactory for most floating-point applications.
By masking or unmasking specific floating-point exceptions, programmers can delegate respon-
sibility for most exceptions to the processor and reserve the most severe exception conditions
for software exception handlers.

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that
have occurred since they were last cleared. A programmer can thus mask all exceptions, run a
calculation, and then inspect the exception flags to see if any exceptions were detected during
the calculation.

In the IA-32 architecture, floating-point exception flag and mask bits are implemented in two
different locations:

® x87 FPU status word and control word. The flag bits are located at bits 0 through 5 of the
x87 FPU status word and the mask bits are located at bits O through 5 of the x87 FPU
control word (see Figures 8-4 and 8-6).

® MXCSR register. The flag bits are located at bits O through 5 of the MXCSR register and
the mask bits are located at bits 7 through 12 of the register (see Figure 10-3).

Although these two sets of flag and mask bits perform the same function, they report on and
control exceptions for different execution environments within the processor. The flag and mask
bits in the x87 FPU status and control words control exception reporting and masking for
computations performed with the x87 FPU instructions; the companion bits in the MXCSR
register control exception reporting and masking for SIMD floating-point computations
performed with the SSE and SSE2 instructions.

Note that when exceptions are masked, the processor may detect multiple exceptions in a single
instruction, because it continues executing the instruction after performing its masked response.
For example, the processor can detect a denormalized operand, perform its masked response to
this exception, and then detect numeric underflow.

4-22

Intel ® DATA TYPES

See Section 4.9.2., “Floating-Point Exception Priority” for a description of the rules for excep-
tion precedence when more than one floating-point exception condition is detected for an
instruction.

4.9.1. Floating-Point Exception Conditions

The following sections describe the various conditions that cause a floating-point exception to
be generated and the masked response of the processor when these conditions are detected.
Chapter 3, Instruction Set Reference, in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2, lists the floating-point exceptions that can be signaled for each floating-point
instruction.

4.9.1.1. INVALID OPERATION EXCEPTION (#l)

The processor reports an invalid operation exception in response to one or more an invalid arith-
metic operands. If the invalid operation exception is masked, the processor sets the IE flag and
returns an indefinite value or a QNaN. This value overwrites the destination register specified
by the instruction. If the invalid operation exception is not masked, the IE flag is set, a software
exception handler is invoked, and the operands remain unaltered.

See Section 4.8.3.6., “Using SNaNs and QNaNs in Applications” information about the result
returned when an exception is caused by an SNaN.

The processor can detect a variety of invalid arithmetic operations that can be coded in a
program. These operations generally indicate a programming error, such as dividing oo by o. See
the following sections for information regarding the invalid-operation exception when detected
while executing x87 FPU or SSE and SSE2 instructions:

® x87 FPU. Section 8.5.1., “Invalid Operation Exception”.
® SIMD floating-point exceptions. Section 11.5.2.1., “Invalid Operation Exception (#I)”

4.9.1.2. DENORMAL OPERAND EXCEPTION (#D)

The processor reports the denormal-operand exception if an arithmetic instruction attempts to
operate on a denormal operand (see Section 4.8.3.2., “Normalized and Denormalized Finite
Numbers”). When the exception is masked, the processor sets the DE flag and proceeds with the
instruction. Operating on denormal numbers will produce results at least as good as, and often
better than, what can be obtained when denormal numbers are flushed to zero. Programmers can
mask this exception so that a computation may proceed, then analyze any loss of accuracy when
the final result is delivered.

When a denormal-operand exception is not masked, the DE flag is set, a software exception
handler is invoked, and the operands remain unaltered. When denormal operands have reduced
significance due to loss of low-order bits, it may be advisable to not operate on them. Precluding
denormal operands from computations can be accomplished by an exception handler that
responds to unmasked denormal-operand exceptions.

4-23

DATA TYPES I nte| ®

See the following sections for information regarding the denormal-operand exception when
detected while executing x87 FPU or SSE and SSE2 instructions:

® x87 FPU. Section 8.5.2., “Denormal Operand Exception (#D)”.
® SIMD floating-point exceptions. Section 11.5.2.2., “Denormal Operand Exception (#D)”

4.9.1.3. DIVIDE-BY-ZERO EXCEPTION (#Z)

The processor reports the floating-point divide-by-zero exception whenever an instruction
attempts to divide a finite non-zero operand by 0. The masked response for the divide-by-zero
exception is to set the ZE flag and return an infinity signed with the exclusive OR of the sign of
the operands. If the divide-by-zero exception is not masked, the ZE flag is set, a software excep-
tion handler is invoked, and the operands remain unaltered.

See the following sections for information regarding the divide-by-zero exception when
detected while executing x87 FPU or SSE and SSE2 instructions:

® x87 FPU. Section 8.5.3., “Divide-By-Zero Exception (#2)”.
® SIMD floating-point exceptions. Section 11.5.2.3., “Divide-By-Zero Exception (#72)”.

4.9.1.4. NUMERIC OVERFLOW EXCEPTION (#0O)

The processor reports a floating-point numeric overflow exception whenever the rounded result
of an instruction exceeds the largest allowable finite value that will fit into the destination
operand. Table 4-9 shows the threshold range for numeric overflow for each of the floating-point
formats; overflow occurs when a rounded result falls at or outside this threshold range.

Table 4-9. Numeric Overflow Thresholds

Floating-Point Format Overflow Thresholds
Single Precision Ix1>1.0x2128
Double Precision Ix1>1.0x21024
Double Extended Precision I x1>1.0 % 216384

When a numeric-overflow exception occurs and the exception is masked, the processor sets the
OE flag and returns one of the values shown in Table 4-10, according to the current rounding
mode (see Section 4.8.4., “Rounding”).

‘When numeric overflow occurs and the numeric-overflow exception is not masked, the OE flag
is set, a software exception handler is invoked, and the source and destination operands either
remain unchanged or a biased result is stored in the destination operand (depending whether the
overflow exception was generated during an SSE or SSE2 floating-point operation or an x87
FPU operation).

4-24

Intel ® DATA TYPES

Table 4-10. Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result
To nearest + +oo
Toward —ee + Largest finite positive number
Toward +eo + Foo

- Largest finite negative number

Toward zero + Largest finite positive number

- Largest finite negative number

See the following sections for information regarding the numeric overflow exception when
detected while executing x87 FPU instructions or while executing SSE or SSE2 instructions:

¢ x87 FPU. Section 8.5.4., “Numeric Overflow Exception (#0)”.
¢ SIMD floating-point exceptions. Section 11.5.2.4., “Numeric Overflow Exception (#0O)”

4.9.1.5. NUMERIC UNDERFLOW EXCEPTION (#U)

The processor detects a floating-point numeric underflow condition whenever the rounded
result of an instruction is tiny, that is, less than the smallest possible normalized, finite value that
will fit into the destination operand. Table 4-11 shows the threshold range for numeric underflow
for each of the floating-point formats (assuming normalized results); underflow occurs when a
rounded result falls strictly within the threshold range. The ability to detect and handle under-
flow is provided to prevent a vary small result from propagating through a computation and
causing another exception (such as overflow during division) to be generated at a later time.

Table 4-11. Numeric Underflow (Normalized) Thresholds

Floating-Point Format Underflow Thresholds
Single Precision Ix1<1.0%2726
Double Precision Ix1<1.0x271022
Double Extended Precision Ix1<1.0 2716382

How the processor handles an underflow condition, depends on two related conditions:
® Creation of a tiny result.

® C(Creation of an inexact result; that is, a result that cannot be represented exactly in the
destination format.

4-25

DATA TYPES I nte| ®

Which of these events causes an underflow exception to be reported and how the processor
responds to the exception condition depends on whether the underflow exception is masked:

® Underflow exception masked. The underflow exception is reported (the UE flag is set)
only when the result is both tiny and inexact. The processor returns a denormalized result
to the destination operand, regardless of inexactness.

¢ Underflow exception not masked. The underflow exception is reported when the result is
tiny, regardless of inexactness. The processor leaves the source and destination operands
unaltered or stores a biased result in the designating operand (depending whether the
underflow exception was generated during an SSE or SSE2 floating-point operation or an
x87 FPU operation) and invokes a software exception handler.

See the following sections for information regarding the numeric underflow exception when
detected while executing x87 FPU instructions or while executing SSE or SSE2 instructions:

® x87 FPU. Section 8.5.5., “Numeric Underflow Exception (#U)”.
® SIMD floating-point exceptions. Section 11.5.2.5., “Numeric Underflow Exception (#U)”.

4.9.1.6. INEXACT-RESULT (PRECISION) EXCEPTION (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an oper-
ation is not exactly representable in the destination format. For example, the fraction 1/3 cannot
be precisely represented in binary floating-point form. This exception occurs frequently and
indicates that some (normally acceptable) accuracy will be lost due to rounding. The exception
is supported for applications that need to perform exact arithmetic only. Because the rounded
result is generally satisfactory for most applications, this exception is commonly masked.

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric
overflow or underflow condition has not occurred, the processor sets the PE flag and stores the
rounded result in the destination operand. The current rounding mode determines the method
used to round the result (see Section 4.8.4., “Rounding”).

If the inexact-result exception is not masked when an inexact result occurs and numeric over-
flow or underflow has not occurred, the PE flag is set, the rounded result is stored in the desti-
nation operand, and a software exception handler is invoked.

If an inexact result occurs in conjunction with numeric overflow or underflow, one of the
following operations is carried out:

® If an inexact result occurs along with masked overflow or underflow, the OE or UE flag
and the PE flag are set and the result is stored as described for the overflow or underflow
exceptions (see Section 4.9.1.4., “Numeric Overflow Exception (#0)” or Section 4.9.1.5.,
“Numeric Underflow Exception (#U)”). If the inexact result exception is unmasked, the
processor also invokes a software exception handler.

® If an inexact result occurs along with unmasked overflow or underflow and the destination
operand is a register, the OE or UE flag and the PE flag are set, the result is stored as
described for the overflow or underflow exceptions, and a software exception handler is
invoked.

4-26

Intel ® DATA TYPES

If an unmasked numeric overflow or underflow exception occurs and the destination operand is
a memory location (which can happen only for a floating-point store), the inexact-result condi-
tion is not reported and the Cl1 flag is cleared.

See the following sections for information regarding the inexact-result exception when detected
while executing x87 FPU or SSE and SSE2 instructions:

® x87 FPU. Section 8.5.6., “Inexact-Result (Precision) Exception (#P)”.
® SIMD floating-point exceptions.

4.9.2. Floating-Point Exception Priority

The processor handles exceptions according to a predetermined precedence. When an instruc-
tion generates two or more exception conditions, the exception precedence sometimes results in
the higher-priority exception being handled and the lower-priority exceptions being ignored. For
example, dividing an SNaN by zero can potentially signal an invalid-operation exception (due
to the SNaN operand) and a divide-by-zero exception. Here, if both exceptions are masked, the
processor handles the higher-priority exception only (the invalid-operation exception), returning
a QNaN to the destination. Alternately, a denormal-operand or inexact-result exception can
accompany a numeric underflow or overflow exception, with both exceptions being handled.

The precedence for floating-point exceptions is as follows:
1. Invalid-operation exception, subdivided as follows:
Stack underflow (occurs with x87 FPU only).
b. Stack overflow (occurs with x87 FPU only).

c. Operand of unsupported format (occurs with x87 FPU only when using the double
extended-precision floating-point format).

d. SNaN operand.

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand has
precedence over lower-priority exceptions. For example, a QNaN divided by zero results
in a QNaN, not a zero-divide exception.

Any other invalid-operation exception not mentioned above or a divide-by-zero exception.

4. Denormal-operand exception. If masked, then instruction execution continues, and a
lower-priority exception can occur as well.

5. Numeric overflow and underflow exceptions, possibly in conjunction with the inexact-
result exception.

6. Inexact-result exception.

Invalid operation, zero divide, and denormal operand exceptions are detected before a floating-
point operation begins, whereas overflow, underflow, and precision exceptions are not detected
until a true result has been computed. When an unmasked pre-operation exception is detected,
the destination operand has not yet been updated, and appears as if the offending instruction has

4-27

DATA TYPES I nte| ®

not been executed. When an unmasked post-operation exception is detected, the destination
operand may be updated with a result, depending on the nature of the exception (except for SSE
and SSE2 instructions, which do not update their destination operands in these cases).

4.9.3. Typical Actions of a Floating-Point Exception Handler

After the floating-point exception handler is invoked, the processor handles the exception in the
same manner that it handles non-floating-point exceptions. (The floating-point exception
handler is normally part of the operating system or executive software, and it usually invokes
also a user-registered floating-point exception handle.) A typical action of the exception handler
is to store state information in memory. Other typical exception handler actions include:

® Examining the stored state information to determine the nature of the error.

® Taking actions to correct the condition that caused the error.

® (learing the exception flags.

® Returning to the interrupted program and resuming normal execution.

In lieu of writing recovery procedures, the exception handler can do the following:
® Increment in software an exception counter for later display or printing.

® Print or display diagnostic information (such as the state information).

® Halt further program execution.

4-28

Instruction Set
Summary

CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of the all the IA-32 instructions, divided into the
following major groups:

® General purpose.

* x87FPU.

¢ x87 FPU and SIMD state management.
¢ Inte]l MMX technology.

® SSE extensions.

® SSE2 extensions.

® System.

Table 5-1 lists the instruction groups and IA-32 processors that support each group. Within these
major groups, the instructions are divided into additional functional subgroups.

Table 5-1. Instruction Groups and IA-32 Processors

Instruction Set

Architecture IA-32 Processor Support
General Purpose All lA-32 processors
x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium

Pro, Pentium II, Pentium II Xeon, Pentium lll, Pentium Il Xeon,
Pentium 4, Intel Xeon processors

x87 FPU and SIMD State | Pentium II, Pentium II Xeon, Pentium Ill, Pentium Il Xeon, Pentium 4,

Management Intel Xeon processors

MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon,
Pentium 1ll, Pentium 1l Xeon, Pentium 4, Intel Xeon processors

SSE Extensions Pentium Ill, Pentium Il Xeon, Pentium 4, Intel Xeon processors

SSE2 Extensions Pentium 4, Intel Xeon processors

System All I1A-32 processors

The following sections list instructions in each major group and subgroup. Given for each
instruction is its mnemonic and descriptive names. When two or more mnemonics are given (for
example, CMOVA/CMOVNBE), they represent different mnemonics for the same instruction
opcode. Assemblers support redundant mnemonics for some instructions to make it easier to
read code listings. For instance, CMOVA (Conditional move if above) and CMOVNBE (Condi-
tional move is not below or equal) represent the same condition.

5-1

INSTRUCTION SET SUMMARY Intel®

5.1. GENERAL-PURPOSE INSTRUCTIONS

The general-purpose instructions preform basic data movement, arithmetic, logic, program flow,
and string operations that programmers commonly use to write application and system software
to run on IA-32 processors. They operate on data contained in memory, in the general-purpose
registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP) and in the EFLAGS register. They
also operate on address information contained in memory, the general-purpose registers, and the
segment registers (CS, DS, SS, ES, FS, and GS). This group of instructions includes the
following subgroups: data transfer, binary integer arithmetic, decimal arithmetic, logic opera-
tions, shift and rotate, bit and byte operations, program control, string, flag control, segment
register operations, and miscellaneous.

5.1.1. Data Transfer Instructions

The data transfer instructions move data between memory and the general-purpose and segment
registers. They also perform specific operations such as conditional moves, stack access, and
data conversion.

MOV Move data between general-purpose registers; move data between
memory and general-purpose or segment registers; move immediates
to general-purpose registers

CMOVE/CMOVZ Conditional move if equal/Conditional move if zero
CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero
CMOVA/CMOVNBE Conditional move if above/Conditional move if not below

or equal

CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if
not below

CMOVB/CMOVNAE Conditional move if below/Conditional move if not above
or equal

CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if
not above

CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less
or equal

CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if
not less

CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater
or equal

CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if
not greater

CMOVC Conditional move if carry

5-2

intel.

CMOVNC
CMOVO
CMOVNO
CMOVS
CMOVNS
CMOVP/CMOVPE
CMOVNP/CMOVPO
XCHG

BSWAP

XADD
CMPXCHG
CMPXCHGSB
PUSH

POP
PUSHA/PUSHAD
POPA/POPAD

IN

OuT

CWD/CDQ
CBW/CWDE
MOVSX

MOVZX

5.1.2.

INSTRUCTION SET SUMMARY

Conditional move if not carry

Conditional move if overflow

Conditional move if not overflow

Conditional move if sign (negative)

Conditional move if not sign (non-negative)

Conditional move if parity/Conditional move if parity even
Conditional move if not parity/Conditional move if parity odd
Exchange

Byte swap

Exchange and add

Compare and exchange

Compare and exchange 8 bytes

Push onto stack

Pop off of stack

Push general-purpose registers onto stack

Pop general-purpose registers from stack

Read from a port

Write to a port

Convert word to doubleword/Convert doubleword to quadword
Convert byte to word/Convert word to doubleword in EAX register
Move and sign extend

Move and zero extend

Binary Arithmetic Instructions

The binary arithmetic instructions perform basic binary integer computations on byte, word, and
doubleword integers located in memory and/or the general purpose registers.

ADD
ADC
SUB
SBB
IMUL

Integer add

Add with carry
Subtract

Subtract with borrow

Signed multiply

INSTRUCTION SET SUMMARY Intel®

MUL Unsigned multiply
IDIV Signed divide
DIV Unsigned divide
INC Increment

DEC Decrement

NEG Negate

CMP Compare

5.1.3. Decimal Arithmetic

The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD)
data.

DAA Decimal adjust after addition
DAS Decimal adjust after subtraction
AAA ASCII adjust after addition

AAS ASCII adjust after subtraction
AAM ASCII adjust after multiplication
AAD ASCII adjust before division

5.1.4. Logical Instructions

The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte,
word, and doubleword values.

AND Perform bitwise logical AND

OR Perform bitwise logical OR

XOR Perform bitwise logical exclusive OR
NOT Perform bitwise logical NOT

5.1.5. Shift and Rotate Instructions

The shift and rotate instructions shift and rotate the bits in word and doubleword operands.

SAR Shift arithmetic right
SHR Shift logical right
SAL/SHL Shift arithmetic left/Shift logical left

5-4

SHRD
SHLD
ROR
ROL
RCR
RCL

INSTRUCTION SET SUMMARY

Shift right double

Shift left double

Rotate right

Rotate left

Rotate through carry right
Rotate through carry left

5.1.6. Bit and Byte Instructions

The bit and instructions test and modify individual bits in the bits in word and doubleword oper-
ands. The byte instructions set the value of a byte operand to indicate the status of flags in the

EFLAGS register.
BT

BTS

BTR

BTC

BSF

BSR

SETE/SETZ
SETNE/SETNZ
SETA/SETNBE
SETAE/SETNB/SETNC

SETB/SETNAE/SETC

SETBE/SETNA
SETG/SETNLE
SETGE/SETNL
SETL/SETNGE
SETLE/SETNG
SETS

SETNS

SETO

Bit test

Bit test and set

Bit test and reset

Bit test and complement

Bit scan forward

Bit scan reverse

Set byte if equal/Set byte if zero

Set byte if not equal/Set byte if not zero

Set byte if above/Set byte if not below or equal

Set byte if above or equal/Set byte if not below/Set byte
if not carry

Set byte if below/Set byte if not above or equal/Set byte
if carry

Set byte if below or equal/Set byte if not above
Set byte if greater/Set byte if not less or equal
Set byte if greater or equal/Set byte if not less
Set byte if less/Set byte if not greater or equal
Set byte if less or equal/Set byte if not greater
Set byte if sign (negative)

Set byte if not sign (non-negative)

Set byte if overflow

INSTRUCTION SET SUMMARY

SETNO
SETPE/SETP
SETPO/SETNP
TEST

5.1.7.

Set byte if not overflow
Set byte if parity even/Set byte if parity
Set byte if parity odd/Set byte if not parity

Logical compare

Control Transfer Instructions

The control transfer instructions provide jump, conditional jump, loop, and call and return oper-
ations to control program flow.

IMP

JENNZ
INE/INZ
JA/INBE
JAE/INB
JB/INAE
JBE/INA
JG/INLE
JGE/INL
JL/INGE
JLE/ING

JC

JNC

JO

INO

IS

JNS

JPO/JNP
JPE/IP
JCXZ/JECXZ
LOOP
LOOPZ/LOOPE
LOOPNZ/LOOPNE

5-6

Jump

Jump if equal/Jump if zero

Jump if not equal/Jump if not zero

Jump if above/Jump if not below or equal
Jump if above or equal/Jump if not below
Jump if below/Jump if not above or equal
Jump if below or equal/Jump if not above
Jump if greater/Jump if not less or equal

Jump if greater or equal/Jump if not less

Jump if less/Jump if not greater or equal

Jump if less or equal/Jump if not greater

Jump if carry

Jump if not carry

Jump if overflow

Jump if not overflow

Jump if sign (negative)

Jump if not sign (non-negative)

Jump if parity odd/Jump if not parity

Jump if parity even/Jump if parity

Jump register CX zero/Jump register ECX zero
Loop with ECX counter

Loop with ECX and zero/Loop with ECX and equal
Loop with ECX and not zero/Loop with ECX and not equal

CALL
RET
IRET
INT
INTO
BOUND
ENTER
LEAVE

INSTRUCTION SET SUMMARY

Call procedure

Return

Return from interrupt
Software interrupt
Interrupt on overflow
Detect value out of range
High-level procedure entry

High-level procedure exit

5.1.8. String Instructions

The string instructions operate on strings of bytes, allowing them to be moved to and from

memory.
MOVS/MOVSB
MOVS/MOVSW
MOVS/MOVSD
CMPS/CMPSB
CMPS/CMPSW
CMPS/CMPSD
SCAS/SCASB
SCAS/SCASW
SCAS/SCASD
LODS/LODSB
LODS/LODSW
LODS/LODSD
STOS/STOSB
STOS/STOSW
STOS/STOSD
REP
REPE/REPZ
REPNE/REPNZ
INS/INSB

Move string/Move byte string

Move string/Move word string

Move string/Move doubleword string
Compare string/Compare byte string
Compare string/Compare word string
Compare string/Compare doubleword string
Scan string/Scan byte string

Scan string/Scan word string

Scan string/Scan doubleword string

Load string/Load byte string

Load string/Load word string

Load string/Load doubleword string

Store string/Store byte string

Store string/Store word string

Store string/Store doubleword string

Repeat while ECX not zero

Repeat while equal/Repeat while zero
Repeat while not equal/Repeat while not zero

Input string from port/Input byte string from port

INSTRUCTION SET SUMMARY Intel®

INS/INSW Input string from port/Input word string from port
INS/INSD Input string from port/Input doubleword string from port
OUTS/OUTSB Output string to port/Output byte string to port
OUTS/OUTSW Output string to port/Output word string to port
OUTS/OUTSD Output string to port/Output doubleword string to port

5.1.9. Flag Control Instructions

The flag control instructions operate on the flags in the EFLAGS register.

STC Set carry flag

CLC Clear the carry flag

CMC Complement the carry flag
CLD Clear the direction flag
STD Set direction flag

LAHF Load flags into AH register
SAHF Store AH register into flags
PUSHF/PUSHFD Push EFLAGS onto stack
POPF/POPFD Pop EFLAGS from stack
STI Set interrupt flag

CLI Clear the interrupt flag

5.1.10. Segment Register Instructions

The segment register instructions allow far pointers (segment addresses) to be loaded into the
segment registers.

LDS Load far pointer using DS
LES Load far pointer using ES
LFS Load far pointer using FS
LGS Load far pointer using GS
LSS Load far pointer using SS

5-8

Intel ® INSTRUCTION SET SUMMARY

5.1.11. Miscellaneous Instructions

The miscellaneous instructions provide such functions as loading an effective address,
executing a “no-operation,” and retrieving processor identification information.

LEA Load effective address
NOP No operation

UD2 Undefined instruction
XLAT/XLATB Table lookup translation

CPUID Processor Identification

5.2. X87 FPU INSTRUCTIONS

The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate
on floating-point, integer, and binary-coded decimal (BCD) operands.

5.2.1. Data Transfer

The data transfer instructions move floating-point, integer, and BCD values between memory
and the x87 FPU registers. They also perform conditional move operations on floating-point

operands.

FLD Load floating-point value

FST Store floating-point value

FSTP Store floating-point value and pop

FILD Load integer

FIST Store integer

FISTP Store integer and pop

FBLD Load BCD

FBSTP Store BCD and pop

FXCH Exchange registers

FCMOVE Floating-point conditional move if equal
FCMOVNE Floating-point conditional move if not equal
FCMOVB Floating-point conditional move if below
FCMOVBE Floating-point conditional move if below or equal
FCMOVNB Floating-point conditional move if not below
FCMOVNBE Floating-point conditional move if not below or equal

INSTRUCTION SET SUMMARY Intel®

FCMOVU Floating-point conditional move if unordered
FCMOVNU Floating-point conditional move if not unordered

5.2.2. Basic Arithmetic

The basic arithmetic instructions perform basic arithmetic operations on floating-point and
integer operands.

FADD Add floating-point

FADDP Add floating-point and pop
FIADD Add integer

FSUB Subtract floating-point

FSUBP Subtract floating-point and pop
FISUB Subtract integer

FSUBR Subtract floating-point reverse
FSUBRP Subtract floating-point reverse and pop
FISUBR Subtract integer reverse

FMUL Multiply floating-point

FMULP Multiply floating-point and pop
FIMUL Multiply integer

FDIV Divide floating-point

FDIVP Divide floating-point and pop
FIDIV Divide integer

FDIVR Divide floating-point reverse
FDIVRP Divide floating-point reverse and pop
FIDIVR Divide integer reverse

FPREM Partial remainder

FPREM1 IEEE Partial remainder

FABS Absolute value

FCHS Change sign

FRNDINT Round to integer

FSCALE Scale by power of two

FSQRT Square root

FXTRACT Extract exponent and significand

5-10

Intel ® INSTRUCTION SET SUMMARY

5.2.3. Comparison

The compare instructions examine or compare floating-point or integer operands.

FCOM Compare floating-point

FCOMP Compare floating-point and pop

FCOMPP Compare floating-point and pop twice

FUCOM Unordered compare floating-point

FUCOMP Unordered compare floating-point and pop
FUCOMPP Unordered compare floating-point and pop twice
FICOM Compare integer

FICOMP Compare integer and pop

FCOMI Compare floating-point and set EFLAGS

FUCOMI Unordered compare floating-point and set EFLAGS
FCOMIP Compare floating-point, set EFLAGS, and pop
FUCOMIP Unordered compare floating-point, set EFLAGS, and pop
FTST Test floating-point (compare with 0.0)

FXAM Examine floating-point

5.2.4. Transcendental

The transcendental instructions perform basic trigonometric and logarithmic operations on
floating-point operands.

FSIN Sine

FCOS Cosine
FSINCOS Sine and cosine
FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2%—1

FYL2X y*log,x

FYL2XPI y*log,(x+1)

INSTRUCTION SET SUMMARY Intel®

5.2.5. Load Constants

The load constants instructions load common constants, such as w, into the x87 floating-point
registers.

FLD1 Load +1.0
FLDZ Load +0.0
FLDPI Load 7
FLDL2E Load log,e
FLDLN2 Load log.2
FLDL2T Load log,10
FLDLG2 Load log,,2

5.2.6. x87 FPU Control

The x87 FPU control instructions operate on the x87 FPU register stack and save and restore the
x87 FPU state.

FINCSTP Increment FPU register stack pointer

FDECSTP Decrement FPU register stack pointer

FFREE Free floating-point register

FINIT Initialize FPU after checking error conditions

FNINIT Initialize FPU without checking error conditions

FCLEX Clear floating-point exception flags after checking for error
conditions

FNCLEX Clear floating-point exception flags without checking for error
conditions

FSTCW Store FPU control word after checking error conditions

FNSTCW Store FPU control word without checking error conditions

FLDCW Load FPU control word

FSTENV Store FPU environment after checking error conditions

FNSTENV Store FPU environment without checking error conditions

FLDENV Load FPU environment

FSAVE Save FPU state after checking error conditions

FNSAVE Save FPU state without checking error conditions

FRSTOR Restore FPU state

5-12

Intel ® INSTRUCTION SET SUMMARY

FSTSW Store FPU status word after checking error conditions
FNSTSW Store FPU status word without checking error conditions
WAIT/FWAIT Wait for FPU

FNOP FPU no operation

5.3. X87 FPU AND SIMD STATE MANAGEMENT

Two state management instructions were introduced into the IA-32 architecture with the
Pentium II processor family:

FXSAVE Save x87 FPU and SIMD state
FXRSTOR Restore x87 FPU and SIMD state

Initially, these instructions operated only on the x87 FPU (and MMX) registers to perform a fast
save and restore, respectively, of the x87 FPU and MMX state. With the introduction of SSE
extensions in the Pentium Ill processor family, these instructions were expanded to also save and
restore the state of the XMM and MXCSR registers. (See Section 10.5., “FXSAVE and
FXRSTOR Instructions” for additional information about these instructions.)

5.4. SIMD INSTRUCTIONS

Beginning with the Pentium II and Pentium with Intel MMX technology processor families,
three extensions were been introduced into the IA-32 architecture to permit IA-32 processors to
perform single-instruction multiple-data (SIMD) operations. These extensions include the
MMX technology, SSE extensions, and SSE2 extensions. Each of these extensions provides a
group of instructions that perform SIMD operations on packed integer and/or packed floating-
point data elements contained in the 64-bit MMX or the 128-bit XMM registers. Figure 5-1
shows a summary of the various SIMD extensions (MMX technology, SSE, and SSE2), the data
types they operated on, and how the data types are packed into MMX and XMM registers.

The Intel MMX Technology was introduced in the Pentium II and Pentium with MMX Tech-
nology processor families. The MMX instructions perform SIMD operations on packed byte,
word, or doubleword integers located in the MMX registers. These instructions are useful in
applications that operate on integer arrays and streams of integer data that lend themselves to
SIMD processing. These applications include photographic image processing, multimedia, and
communications.

The SSE extensions were introduced in the Pentium Il processor family. The SSE instructions
operate on packed single-precision floating-point values contained in the XMM registers and on
packed integers contained in the MMX registers. The SSE SIMD integer instructions are an
extension of the MMX technology instruction set. Several additional SSE instructions provide
state management, cache control, and memory ordering operations. The SSE instructions are
targeted at applications that operate on arrays of single-precision floating-point data elements,
including 3-D geometry, 3-D rendering, and video encoding and decoding applications.

5-13

INSTRUCTION SET SUMMARY

SIMD Extension Register Layout

MMX Registers

MMX Technology LETTTTTT
L1 [[|
I I |
I |

MMX Registers
SSE LLTTTTTT
L1 T [|
I I |
I |

XMM Registers

I I |

MMX Registers
SSE2 | | |

XMM Registers

Data Type

8 Packed Byte Integers
4 Packed Word Integers

2 Packed Doubleword Integers

Quadword

8 Packed Byte Integers
4 Packed Word Integers

2 Packed Doubleword Integers

Quadword

4 Packed Single-Precision
Floating-Point Values

2 Packed Doubleword Integers

Quadword

2 Packed Double-Precision
Floating-Point Values

16 Packed Byte Integers

8 Packed Word Integers

4 Packed Doubleword
Integers

2 Quadword Integers

Double Quadword

Figure 5-1. SIMD Extensions, Register Layouts, and Data Types

5-14

Intel e INSTRUCTION SET SUMMARY

The SSE2 extensions were introduced in the Pentium 4 and Intel Xeon processors. The SSE2
instructions operate on packed double-precision floating-point values contained in the XMM
registers and on packed integers contained in the MMX and the XMM registers. The SSE2 SIMD
integer instructions extend IA-32 SIMD operations in two ways: (1) they add new 128-bit SIMD
integer operations and (2) they extend all the 64-bit SIMD integer operations introduced in the
MMX technology and SSE to operate on data contained in the 128-bit XMM registers. The SSE2
instructions also provide several new cache control and memory ordering operations. The SSE2
instructions are intended for applications that operate on arrays of double-precision floating-
point data elements, such as 3-D graphics and scientific data processing applications. The ability
to operate on packed integers in 128-bit registers also enhances the performance of multimedia
and communications applications.

Used together, the MMX Technology, SSE extensions, and SSE2 extensions provide a rich set
of SIMD operations that can be performed on both integer and floating-point data arrays and on
streaming integer and floating-point data. When these operations are used effectively, they can
greatly increase the performance of applications running on the IA-32 processors.

The following sections summarize SIMD instructions introduced in the three SIMD extensions
to the IA-32 architecture: MMX instructions, SSE instructions, and SSE2 instructions.

5.5. MMX™ INSTRUCTIONS

The MMX instructions are SIMD instructions that were introduced into the IA-32 architecture
in the Pentium with MMX Technology and Pentium II processors. These instructions operate on
packed byte, word, doubleword, or quadword integer operands contained in memory, in MMX
registers, and/or in general-purpose registers (see Chapter 9, Programming With the Intel MMX
Technology).

The MMX instructions can only be executed on IA-32 processors that support the MMX tech-
nology. Support for these instructions can be detected with the CPUID instruction (see the
description of the CPUID instruction in Chapter 3, Instruction Set Reference, of the IA-32 Intel
Architecture Software Developer’s Manual, Volume 2).

Additional SIMD instructions that operate on packed integer data located in MMX registers
were introduced with the SSE and SSE2 extensions.

5.5.1. Data Transfer Instructions

The data transfer instructions move doubleword and quadword operands between MMX regis-
ters and between MMX registers and memory.

MOVD Move doubleword.
MOVQ Move quadword.

5-15

INSTRUCTION SET SUMMARY Intel®

5.5.2. Conversion Instructions

The conversion instructions pack and unpack bytes, words, and doublewords.

PACKSSWB
PACKSSDW
PACKUSWB
PUNPCKHBW
PUNPCKHWD
PUNPCKHDQ
PUNPCKLBW
PUNPCKLWD
PUNPCKLDQ

Pack words into bytes with signed saturation.

Pack doublewords into words with signed saturation.
Pack words into bytes with unsigned saturation.
Unpack high-order bytes.

Unpack high-order words.

Unpack high-order doublewords.

Unpack low-order bytes.

Unpack low-order words.

Unpack low-order doublewords.

5.5.3. Packed Arithmetic Instructions

The packed arithmetic instructions perform packed integer arithmetic on packed byte, word, and

doubleword integers.
PADDB
PADDW
PADDD
PADDSB
PADDSW
PADDUSB
PADDUSW
PSUBB
PSUBW
PSUBD
PSUBSB
PSUBSW
PSUBUSB
PSUBUSW
PMULHW

5-16

Add packed byte integers.

Add packed word integers.

Add packed doubleword integers.

Add packed signed byte integers with signed saturation.

Add packed signed word integers with signed saturation.

Add packed unsigned byte integers with unsigned saturation.
Add packed unsigned word integers with unsigned saturation.
Subtract packed byte integers.

Subtract packed word integers.

Subtract packed doubleword integers.

Subtract packed signed byte integers with signed saturation.
Subtract packed signed word integers with signed saturation.
Subtract packed unsigned byte integers with unsigned saturation.
Subtract packed unsigned word integers with unsigned saturation.

Multiply packed signed word integers and store high result.

Intel ® INSTRUCTION SET SUMMARY

PMULLW Multiply packed signed word integers and store low result.
PMADDWD Multiply and add packed word integers.

5.5.4. Comparison Instructions

The compare instructions compare packed bytes, words, or doublewords.

PCMPEQB Compare packed bytes for equal.

PCMPEQW Compare packed words for equal.

PCMPEQD Compare packed doublewords for equal.

PCMPGTB Compare packed signed byte integers for greater than.
PCMPGTW Compare packed signed word integers for greater than.
PCMPGTD Compare packed signed doubleword integers for greater than.

5.5.5. Logical Instructions

The logical instructions perform AND, AND NOT, OR, and XOR operations on quadword oper-
ands.

PAND Bitwise logical AND.
PANDN Bitwise logical AND NOT.
POR Bitwise logical OR.

PXOR Bitwise logical exclusive OR.

5.5.6. Shift and Rotate Instructions

The shift and rotate instructions shift and rotate packed bytes, words, or doublewords, or quad-
words in 64-bit operands.

PSLLW Shift packed words left logical.

PSLLD Shift packed doublewords left logical.
PSLLQ Shift packed quadword left logical.
PSRLW Shift packed words right logical.

PSRLD Shift packed doublewords right logical.
PSRLQ Shift packed quadword right logical.
PSRAW Shift packed words right arithmetic.
PSRAD Shift packed doublewords right arithmetic.

INSTRUCTION SET SUMMARY Intel®

5.5.7. State Management

The EMMS instruction clears the MMX state from the MMX registers.
EMMS Empty MMX state.

5.6. SSE INSTRUCTIONS

The SSE instructions were introduced into the IA-32 architecture with the Pentium Il processor
family and represent an extension of the SIMD execution model introduced with the MMX tech-
nology. These instructions are divided into four groups:

® SIMD single-precision floating-point instructions that operate on the XMM registers.
® MXSCR state management instructions.

® 64-bit SIMD integer instructions that operate on the MMX registers.

® (Cacheability control, prefetch, and instruction ordering instructions.

The SSE instructions can only be executed on IA-32 processors that support the SSE extensions.
Support for these instructions can be detected with the CPUID instruction (see the description
of the CPUID instruction in Chapter 3, Instruction Set Reference, of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 2).

5.6.1. SSE SIMD Single-Precision Floating-Point Instructions

The following instructions operate on packed and scalar single-precision floating-point values
located in XMM registers and/or memory. These instructions are divided into the following four
groups:

® Data transfer

® Packed arithmetic
® Comparison

® Logical

¢ Shuffle and unpack

® Conversion

5.6.1.1. SSE DATA TRANSFER INSTRUCTIONS

The SSE data transfer instructions move packed and scalar single-precision floating-point oper-
ands between XMM registers and between XMM registers and memory.

MOVAPS Move four aligned packed single-precision floating-point values
between XMM registers or between and XMM register and memory.

5-18

intel.

MOVUPS
MOVHPS

MOVHLPS

MOVLPS

MOVLHPS

MOVMSKPS

MOVSS

5.6.1.2.

INSTRUCTION SET SUMMARY

Move four unaligned packed single-precision floating-point values
between XMM registers or between and XMM register and memory.

Move two packed single-precision floating-point values to an from
the high quadword of an XMM register and memory.

Move two packed single-precision floating-point values from the
high quadword of an XMM register to the low quadword of another
XMM register.

Move two packed single-precision floating-point values to an from
the low quadword of an XMM register and memory.

Move two packed single-precision floating-point values from the
low quadword of an XMM register to the high quadword of another
XMM register.

Extract sign mask from four packed single-precision floating-point
values.

Move scalar single-precision floating-point value between XMM
registers or between an XMM register and memory.

SSE PACKED ARITHMETIC INSTRUCTIONS

The SSE packed arithmetic instructions perform packed and scalar arithmetic operations on
packed and scalar single-precision floating-point operands.

ADDPS
ADDSS
SUBPS
SUBSS
MULPS
MULSS
DIVPS
DIVSS
RCPPS

RCPSS
SQRTPS

SQRTSS
RSQRTPS

Add packed single-precision floating-point values.
Add scalar single-precision floating-point values.
Subtract packed single-precision floating-point values.
Subtract scalar single-precision floating-point values.
Multiply packed single-precision floating-point values.
Multiply scalar single-precision floating-point values.
Divide packed single-precision floating-point values.
Divide scalar single-precision floating-point values.

Compute reciprocals of packed single-precision floating-point
values.

Compute reciprocal of scalar single-precision floating-point values.

Compute square roots of packed single-precision floating-point
values.

Compute square root of scalar single-precision floating-point values.

Compute reciprocals of square roots of packed single-precision
floating-point values.

5-19

INSTRUCTION SET SUMMARY Intel®

RSQRTSS Compute reciprocal of square root of scalar single-precision floating-
point values.

MAXPS Return maximum packed single-precision floating-point values.

MAXSS Return maximum scalar single-precision floating-point values.

MINPS Return minimum packed single-precision floating-point values.

MINSS Return minimum scalar single-precision floating-point values.

5.6.1.3. SSE COMPARISON INSTRUCTIONS

The SSE compare instructions compare packed and scalar single-precision floating-point oper-
ands.

CMPPS Compare packed single-precision floating-point values.
CMPSS Compare scalar single-precision floating-point values.
COMISS Perform ordered comparison of scalar single-precision floating-point

values and set flags in EFLAGS register.

UCOMISS Perform unordered comparison of scalar single-precision floating-
point values and set flags in EFLAGS register.

5.6.1.4. SSE LOGICAL INSTRUCTIONS

The SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on
packed single-precision floating-point operands.

ANDPS Perform bitwise logical AND of packed single-precision floating-
point values.

ANDNPS Perform bitwise logical AND NOT of packed single-precision
floating-point values.

ORPS Perform bitwise logical OR of packed single-precision floating-point
values.

XORPS Perform bitwise logical XOR of packed single-precision floating-

point values.

5.6.1.5. SSE SHUFFLE AND UNPACK INSTRUCTIONS

The SSE shuffle and unpack instructions shuffle or interleave single-precision floating-point
values in packed single-precision floating-point operands.

SHUFPS Shuffles values in packed single-precision floating-point operands.

UNPCKHPS Unpacks and interleaves the two high-order values from two single-
precision floating-point operands.

5-20

Intel ® INSTRUCTION SET SUMMARY

UNPCKLPS Unpacks and interleaves the two low-order values from two single-
precision floating-point operands.

5.6.1.6. SSE CONVERSION INSTRUCTIONS

The SSE conversion instructions convert packed and individual doubleword integers into
packed and scalar single-precision floating-point values and vice versa.

CVTPI2PS Convert packed doubleword integers to packed single-precision
floating-point values.

CVTSI2SS Convert doubleword integer to scalar single-precision floating-point
value.

CVTPS2PI Convert packed single-precision floating-point values to packed
doubleword integers.

CVTTPS2PI Convert with truncation packed single-precision floating-point
values to packed doubleword integers.

CVTSS2SI Convert scalar single-precision floating-point value to a doubleword
integer.

CVTTSS2SI Convert with truncation scalar single-precision floating-point value

to scalar doubleword integer.

5.6.2. MXCSR State Management Instructions

The MXCSR state management instructions allow saving and restoring the state of the MXCSR
control and status register.

LDMXCSR Load MXCSR register.
STMXCSR Save MXCSR register state.

5.6.3. SSE 64-Bit SIMD Integer Instructions

These SSE 64-bit SIMD integers instructions perform additional operations on packed bytes,
words, or doublewords contained in MMX registers. They represent enhancements to the MMX
instruction set described in Section 5.5., “MMX Instructions”.

PAVGB Compute average of packed unsigned byte integers.
PAVGW Compute average of packed unsigned byte integers.
PEXTRW Extract word.

PINSRW Insert word.

PMAXUB Maximum of packed unsigned byte integers.

5-21

INSTRUCTION SET SUMMARY Intel®

PMAXSW Maximum of packed signed word integers.

PMINUB Minimum of packed unsigned byte integers.

PMINSW Minimum of packed signed word integers.
PMOVMSKB Move Byte Mask.

PMULHUW Multiply packed unsigned integers and store high result.
PSADBW Compute Sum of absolute differences.

PSHUFW Shuffle packed integer word in MMX register.

5.6.4. SSE Cacheability Control, Prefetch, and Instruction
Ordering Instructions

The cacheability control instructions provide control over the caching of non-temporal data
when storing data from the MMX and XMM registers to memory. The PREFETC# allows data
to be prefetched to a selected cache level. The SFENCE instruction controls instruction ordering
on store operations.

MASKMOVQ Non-temporal store of selected bytes from an MMX register into
memory.

MOVNTQ Non-temporal store of quadword from an MMX register into
memory.

MOVNTPS Non-temporal store of four packed single-precision floating-point

values from an XMM register into memory.

PREFETCH#A Load 32 or more of bytes from memory to a selected level of the
processor’s cache hierarchy.

SFENCE Serializes store operations.

5.7. SSE2INSTRUCTIONS

The SSE2 instructions were introduced into the IA-32 architecture with the Pentium 4 and Intel
Xeon processors. These instructions operate on packed double-precision floating-point operands
and on packed byte, word, doubleword, and quadword operands located in the XMM registers.

The SSE2 instructions can only be executed on IA-32 processors that support the SSE2 exten-
sions. Support for these instructions can be detected with the CPUID instruction (see the
description of the CPUID instruction in Chapter 3, Instruction Set Reference, of the IA-32 Intel
Architecture Software Developer’s Manual, Volume 2).

The SSE2 instructions are divided into four functional groups
® Packed and scalar double-precision floating-point instructions.

® Packed single-precision floating-point conversion instructions.

5-22

Intel ® INSTRUCTION SET SUMMARY

® 128-bit SIMD integer instructions.
® Cacheability-control and instruction ordering instructions.

The following sections give an overview of each of the instructions in these groups.

5.7.1. SSE2 Packed and Scalar Double-Precision Floating-Point
Instructions

The SSE2 packed and scalar double-precision floating-point instructions perform data move-
ment, arithmetic, comparison, conversion, logical, and shuffle operations on double-precision
floating-point operands.

5.7.1.1. SSE2 DATA MOVEMENT INSTRUCTIONS

The SSE2 data movement instructions move double-precision floating-point data between
XMM registers and between XMM registers and memory.

MOVAPD Move two aligned packed double-precision floating-point values
between XMM registers or between and XMM register and memory.

MOVUPD Move two unaligned packed double-precision floating-point values
between XMM registers or between and XMM register and memory.

MOVHPD Move high packed double-precision floating-point value to an from
the high quadword of an XMM register and memory.

MOVLPD Move low packed single-precision floating-point value to an from
the low quadword of an XMM register and memory.

MOVMSKPD Extract sign mask from two packed double-precision floating-point
values.

MOVSD Move scalar double-precision floating-point value between XMM

registers or between an XMM register and memory.

5.7.1.2. SSE2 PACKED ARITHMETIC INSTRUCTIONS

The arithmetic instructions perform addition, subtraction, multiply, divide, square root, and
maximum/minimum operations on packed and scalar double-precision floating-point operands.

ADDPD Add packed double-precision floating-point values.
ADDSD Add scalar double precision floating-point values.
SUBPD Subtract scalar double-precision floating-point values.
SUBSD Subtract scalar double-precision floating-point values.
MULPD Multiply packed double-precision floating-point values.
MULSD Multiply scalar double-precision floating-point values.

5-23

INSTRUCTION SET SUMMARY Intel®

DIVPD Divide packed double-precision floating-point values.

DIVSD Divide scalar double-precision floating-point values.

SQRTPD Compute packed square roots of packed double-precision floating-
point values.

SQRTSD Compute scalar square root of scalar double-precision floating-point
value.

MAXPD Return maximum packed double-precision floating-point values.

MAXSD Return maximum scalar double-precision floating-point value.

MINPD Return minimum packed double-precision floating-point values.

MINSD Return minimum scalar double-precision floating-point value.

5.7.1.3. SSE2 LOGICAL INSTRUCTIONS

The SSE2 logical instructions preform AND, AND NOT, OR, and XOR operations on packed
double-precision floating-point values.

ANDPD Perform bitwise logical AND of packed double-precision floating-
point values.
ANDNPD Perform bitwise logical AND NOT of packed double-precision

floating-point values.

ORPD Perform bitwise logical OR of packed double-precision floating-
point values.

XORPD Perform bitwise logical XOR of packed double-precision floating-
point values.

5.7.1.4. SSE2 COMPARE INSTRUCTIONS

The SSE2 compare instructions compare packed and scalar double-precision floating-point
values and return the results of the comparison either to the destination operand or to the
EFLAGS register.

CMPPD Compare packed double-precision floating-point values.
CMPSD Compare scalar double-precision floating-point values.
COMISD Perform ordered comparison of scalar double-precision floating-

point values and set flags in EFLAGS register.

UCOMISD Perform unordered comparison of scalar double-precision floating-
point values and set flags in EFLAGS register.

5-24

Intel ® INSTRUCTION SET SUMMARY

5.7.1.5. SSE2 SHUFFLE AND UNPACK INSTRUCTIONS

The SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-point
values in packed double-precision floating-point operands.

SHUFPD Shuffles values in packed double-precision floating-point operands.

UNPCKHPD Unpacks and interleaves the high values from two packed double-
precision floating-point operands.

UNPCKLPD Unpacks and interleaves the low values from two packed double-
precision floating-point operands.

5.7.1.6. SSE2 CONVERSION INSTRUCTIONS

The SSE2 conversion instructions convert packed and individual doubleword integers into
packed and scalar double-precision floating-point values and vice versa. They also convert
between packed and scalar single-precision and double-precision floating-point values.

CVTPD2PI Convert packed double-precision floating-point values to packed
doubleword integers.

CVTTPD2PI Convert with truncation packed double-precision floating-point
values to packed doubleword integers.

CVTPI2PD Convert packed doubleword integers to packed double-precision
floating-point values.

CVTPD2DQ Convert packed double-precision floating-point values to packed
doubleword integers.

CVTTPD2DQ Convert with truncation packed double-precision floating-point
values to packed doubleword integers.

CVTDQ2PD Convert packed doubleword integers to packed double-precision
floating-point values.

CVTPS2PD Convert packed single-precision floating-point values to packed
double-precision floating-point values.

CVTPD2PS Convert packed double-precision floating-point values to packed
single-precision floating-point values.

CVTSS2SD Convert scalar single-precision floating-point values to scalar
double-precision floating-point values.

CVTSD2SS Convert scalar double-precision floating-point values to scalar
single-precision floating-point values.

CVTSD2SI Convert scalar double-precision floating-point values to a double-
word integer.

CVTTSD2SI Convert with truncation scalar double-precision floating-point
values to scalar doubleword integers.

5-25

INSTRUCTION SET SUMMARY Intel®

CVTSI2SD Convert doubleword integer to scalar double-precision floating-point
value.

5.7.2. SSE2 Packed Single-Precision Floating-Point Instructions

The SSE2 packed single-precision floating-point instructions perform conversion operations on
single-precision floating-point and integer operands. These instructions represent enhancements
to the SSE single-precision floating-point instructions.

CVTDQ2PS Convert packed doubleword integers to packed single-precision
floating-point values.

CVTPS2DQ Convert packed single-precision floating-point values to packed
doubleword integers.

CVTTPS2DQ Convert with truncation packed single-precision floating-point
values to packed doubleword integers.

5.7.3. SSE2 128-Bit SIMD Integer Instructions

The SSE2 SIMD integers instructions perform additional operations on packed words, double-
words, and quadwords contained in XMM and MMX registers.

MOVDQA Move aligned double quadword.

MOVDQU Move unaligned double quadword.

MOVQ2DQ Move quadword integer from MMX to XMM registers.
MOVDQ2Q Move quadword integer from XMM to MMX registers.
PMULUDQ Multiply packed unsigned doubleword integers.
PADDQ Add packed quadword integers.

PSUBQ Subtract packed quadword integers.

PSHUFLW Shuffle packed low words.

PSHUFHW Shuffle packed high words.

PSHUFD Shuffle packed doublewords.

PSLLDQ Shift double quadword left logical.

PSRLDQ Shift double quadword right logical.

PUNPCKHQDQ Unpack high quadwords.

PUNPCKLQDQ Unpack low quadwords.

5-26

Intel ® INSTRUCTION SET SUMMARY

5.7.4. SSE2 Cacheability Control and Instruction Ordering
Instructions
The SSE2 cacheability control instructions provide additional operations for caching of non-

temporal data when storing data from XMM registers to memory. The LFENCE and MFENCE
instructions provide additional control of instruction ordering on store operations.

CLFLUSH Flushes and invalidates a memory operand and its associated cache
line from all levels of the processor’s cache hierarchy.

LFENCE Serializes load operations.

MFENCE Serializes load and store operations.

PAUSE Improves the performance of “spin-wait loops.”

MASKMOVDQU Non-temporal store of selected bytes from an XMM register into
memory.

MOVNTPD Non-temporal store of two packed double-precision floating-point
values from an XMM register into memory.

MOVNTDQ Non-temporal store of double quadword from an XMM register into
memory.

MOVNTI Non-temporal store of a doubleword from a general-purpose register

into memory.

5.8. SYSTEM INSTRUCTIONS

The following system instructions are used to control those functions of the processor that are
provided to support for operating systems and executives.

LGDT Load global descriptor table (GDT) register
SGDT Store global descriptor table (GDT) register
LLDT Load local descriptor table (LDT) register
SLDT Store local descriptor table (LDT) register
LTR Load task register

STR Store task register

LIDT Load interrupt descriptor table (IDT) register
SIDT Store interrupt descriptor table (IDT) register
MOV Load and store control registers

LMSW Load machine status word

SMSW Store machine status word

5-27

INSTRUCTION SET SUMMARY

CLTS Clear the task-switched flag

ARPL Adjust requested privilege level

LAR Load access rights

LSL Load segment limit

VERR Verify segment for reading

VERW Verify segment for writing

MOV Load and store debug registers

INVD Invalidate cache, no writeback

WBINVD Invalidate cache, with writeback

INVLPG Invalidate TLB Entry

LOCK (prefix) Lock Bus

HLT Halt processor

RSM Return from system management mode (SMM)

RDMSR Read model-specific register

WRMSR Write model-specific register

RDPMC Read performance monitoring counters

RDTSC Read time stamp counter

SYSENTER Fast System Call, transfers to a flat protected mode kernel at CPL=0
SYSEXIT Fast System Call, transfers to a flat protected mode kernel at CPL=3

5-28

Procedure Calls,
Interrupts, and
Exceptions

intel.

CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND
EXCEPTIONS

This chapter describes the facilities in the IA-32 architecture for executing calls to procedures
or subroutines. It also describes how interrupts and exceptions are handled from the perspective
of an application programmer.

6.1. PROCEDURE CALL TYPES

The processor supports procedure calls in the following two different ways:
® CALL and RET instructions.
® ENTER and LEAVE instructions, in conjunction with the CALL and RET instructions.

Both of these procedure call mechanisms use the procedure stack, commonly referred to simply
as “the stack,” to save the state of the calling procedure, pass parameters to the called procedure,
and store local variables for the currently executing procedure.

The processor’s facilities for handling interrupts and exceptions are similar to those used by the
CALL and RET instructions.

6.2. STACK

The stack (see Figure 6-1) is a contiguous array of memory locations. It is contained in a
segment and identified by the segment selector in the SS register. (When using the flat memory
model, the stack can be located anywhere in the linear address space for the program.) A stack
can be up to 4 gigabytes long, the maximum size of a segment.

Items are placed on the stack using the PUSH instruction and removed from the stack using the
POP instruction. When an item is pushed onto the stack, the processor decrements the ESP
register, then writes the item at the new top of stack. When an item is popped off the stack, the
processor reads the item from the top of stack, then increments the ESP register. In this manner,
the stack grows down in memory (towards lesser addresses) when items are pushed on the stack
and shrinks up (towards greater addresses) when the items are popped from the stack.

A program or operating system/executive can set up many stacks. For example, in multitasking
systems, each task can be given its own stack. The number of stacks in a system is limited by
the maximum number of segments and the available physical memory.

When a system sets up many stacks, only one stack—the current stack—is available at a time.
The current stack is the one contained in the segment referenced by the SS register.

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

Stack Segment
Bottom of Stack
(Initial ESP Value)
Local Variables
];)rzngsghnrg The Stack Can Be
| 16 or 32 Bits Wide
Parameters
Passed to The EBP register is
Called typically set to point
Procedure to the return
‘ instruction pointer.
Frame Boundary el Instruct
eturn Instruction :
Pointer 4—{ EBP Register ‘
4—{ ESP Register ‘

Top of Stack

Pushes Move the Pops Move the
Top Of Stack to Top Of Stack to

Lower Addresses Higher Addresses

Figure 6-1. Stack Structure

The processor references the SS register automatically for all stack operations. For example,
when the ESP register is used as a memory address, it automatically points to an address in the
current stack. Also, the CALL, RET, PUSH, POP, ENTER, and LEAVE instructions all perform
operations on the current stack.

6.2.1. Setting Up a Stack

To set a stack and establish it as the current stack, the program or operating system/executive
must do the following:

1. Establish a stack segment.

2. Load the segment selector for the stack segment into the SS register using a MOV, POP, or
LSS instruction.

3. Load the stack pointer for the stack into the ESP register using a MOV, POP, or LSS
instruction. (The LSS instruction can be used to load the SS and ESP registers in one
operation.)

6-2

Intelo PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

See “Segment Descriptors” in Chapter 3 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3, for information on how to set up a segment descriptor and segment limits for
a stack segment.

6.2.2. Stack Alignment

The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit (double-word)
boundaries, depending on the width of the stack segment. The D flag in the segment descriptor
for the current code segment sets the stack-segment width (see “Segment Descriptors” in Chap-
ter 3 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3). The PUSH and
POP instructions use the D flag to determine how much to decrement or increment the stack
pointer on a push or pop operation, respectively. When the stack width is 16 bits, the stack point-
er is incremented or decremented in 16-bit increments; when the width is 32 bits, the stack point-
er is incremented or decremented in 32-bit increments. Pushing a 16-bit value onto a 32-bit wide
stack can result in stack misaligned (that is, the stack pointer is not aligned on a doubleword
boundary). One exception to this rule is when the contents of a segment register (a 16-bit seg-
ment selector) are pushed onto a 32-bit wide stack. Here, the processor automatically aligns the
stack pointer to the next 32-bit boundary.

The processor does not check stack pointer alignment. It is the responsibility of the programs,
tasks, and system procedures running on the processor to maintain proper alignment of stack
pointers. Misaligning a stack pointer can cause serious performance degradation and in some in-
stances program failures.

6.2.3. Address-Size Attributes for Stack Accesses

Instructions that use the stack implicitly (such as the PUSH and POP instructions) have two
address-size attributes each of either 16 or 32 bits. This is because they always have the implicit
address of the top of the stack, and they may also have an explicit memory address (for example,
PUSH Arrayl[EBX]). The attribute of the explicit address is determined by the D flag of the
current code segment and the presence or absence of the 67H address-size prefix, as usual.

The address-size attribute of the top of the stack determines whether SP or ESP is used for the
stack access. Stack operations with an address-size attribute of 16 use the 16-bit SP stack pointer
register and can use a maximum stack address of FFFFH; stack operations with an address-size
attribute of 32 bits use the 32-bit ESP register and can use a maximum address of FFFFFFFFH.
The default address-size attribute for data segments used as stacks is controlled by the B flag of
the segment’s descriptor. When this flag is clear, the default address-size attribute is 16; when
the flag is set, the address-size attribute is 32.

6.2.4. Procedure Linking Information

The processor provides two pointers for linking of procedures: the stack-frame base pointer and
the return instruction pointer. When used in conjunction with a standard software procedure-call
technique, these pointers permit reliable and coherent linking of procedures.

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

6.2.4.1. STACK-FRAME BASE POINTER

The stack is typically divided into frames. Each stack frame can then contain local variables,
parameters to be passed to another procedure, and procedure linking information. The stack-
frame base pointer (contained in the EBP register) identifies a fixed reference point within the
stack frame for the called procedure. To use the stack-frame base pointer, the called procedure
typically copies the contents of the ESP register into the EBP register prior to pushing any local
variables on the stack. The stack-frame base pointer then permits easy access to data structures
passed on the stack, to the return instruction pointer, and to local variables added to the stack by
the called procedure.

Like the ESP register, the EBP register automatically points to an address in the current stack
segment (that is, the segment specified by the current contents of the SS register).

6.2.4.2. RETURN INSTRUCTION POINTER

Prior to branching to the first instruction of the called procedure, the CALL instruction pushes
the address in the EIP register onto the current stack. This address is then called the return-
instruction pointer and it points to the instruction where execution of the calling procedure
should resume following a return from the called procedure. Upon returning from a called
procedure, the RET instruction pops the return-instruction pointer from the stack back into the
EIP register. Execution of the calling procedure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It is thus up
to the programmer to insure that stack pointer is pointing to the return-instruction pointer on the
stack, prior to issuing a RET instruction. A common way to reset the stack pointer to the point
to the return-instruction pointer is to move the contents of the EBP register into the ESP register.
If the EBP register is loaded with the stack pointer immediately following a procedure call, it
should point to the return instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the calling proce-
dure. Prior to executing the RET instruction, the return instruction pointer can be manipulated
in software to point to any address in the current code segment (near return) or another code
segment (far return). Performing such an operation, however, should be undertaken very
cautiously, using only well defined code entry points.

6.3. CALLING PROCEDURES USING CALL AND RET

The CALL instructions allows control transfers to procedures within the current code segment
(near call) and in a different code segment (far call). Near calls usually provide access to local
procedures within the currently running program or task.

Far calls are usually used to access operating system procedures or procedures in a different task.
See “CALL—Call Procedure” in Chapter 3 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2, for a detailed description of the CALL instruction.

The RET instruction also allows near and far returns to match the near and far versions of the
CALL instruction. In addition, the RET instruction allows a program to increment the stack
pointer on a return to release parameters from the stack. The number of bytes released from the

6-4

Intelo PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

stack is determined by an optional argument (#) to the RET instruction. See “RET—Return from
Procedure” in Chapter 3 of the IA-32 Intel Architecture Software Developer’s Manual, Volume
2, for a detailed description of the RET instruction.

6.3.1. Near CALL and RET Operation

When executing a near call, the processor does the following (see Figure 6-4):

1. Pushes the current value of the EIP register on the stack.

2. Loads the offset of the called procedure in the EIP register.

3. Begins execution of the called procedure.

When executing a near return, the processor performs these actions:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. (If the RET instruction has an optional n argument.) Increments the stack pointer by the
number of bytes specified with the n operand to release parameters from the stack.

3. Resumes execution of the calling procedure.

6.3.2. Far CALL and RET Operation

When executing a far call, the processor performs these actions (see Figure 6-2):
1. Pushes current value of the CS register on the stack.
2. Pushes the current value of the EIP register on the stack.

3. Loads the segment selector of the segment that contains the called procedure in the CS
register.

4. Loads the offset of the called procedure in the EIP register.

5. Begins execution of the called procedure.

When executing a far return, the processor does the following:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. Pops the top-of-stack value (the segment selector for the code segment being returned to)
into the CS register.

3. (If the RET instruction has an optional n argument.) Increments the stack pointer by the
number of bytes specified with the n operand to release parameters from the stack.

4. Resumes execution of the calling procedure.

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Stack During

Stack During

Far Call
Eﬁﬂ:e Near Call Stack
Before Frame
Call Param 1 ggf”ore Param 1
Param 2 Param 2
Param 3 -<— ESP Before Call Param 3 <«— ESP Before Call
Stack Calling EIP ~<— ESP After Call Calling CS
Frame£ Stack Calling EIP |<— ESP After Call
After Frame
Call After
. Call
Stack During Stack During
Near Return Far Return
<«— ESP After Return ~<—ESP After Return
Param 1 Param 1
Param 2 Param 2
Param 3 Param 3
Calling EIP |<«— ESP Before Return Calling CS
—>»| Calling EIP |<—ESP Before Return
Note: On a near or far return, parameters are
released from the stack if the correct
value is given for the n operand in
the RET ninstruction.
Figure 6-2. Stack on Near and Far Calls
6.3.3. Parameter Passing

Parameters can be passed between procedures in any of three ways: through general-purpose
registers, in an argument list, or on the stack.

6.3.3.1.

PASSING PARAMETERS THROUGH THE GENERAL-PURPOSE
REGISTERS

The processor does not save the state of the general-purpose registers on procedure calls. A
calling procedure can thus pass up to six parameter to the called procedure by copying the
parameters into any of these registers (except the ESP and EBP registers) prior to executing the
CALL instruction. The called procedure can likewise pass parameters back to the calling proce-
dure through general-purpose registers.

6-6

Intelo PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.3.3.2. PASSING PARAMETERS ON THE STACK

To pass a large number of parameters to the called procedure, the parameters can be placed on
the stack, in the stack frame for the calling procedure. Here, it is useful to use the stack-frame
base pointer (in the EBP register) to make a frame boundary for easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the calling
procedure.

6.3.3.3. PASSING PARAMETERS IN AN ARGUMENT LIST

An alternate method of passing a larger number of parameters (or a data structure) to the called
procedure is to place the parameters in an argument list in one of the data segments in memory.
A pointer to the argument list can then be passed to the called procedure through a general-
purpose register or the stack. Parameters can also be passed back to the calling procedure in this
same manner.

6.3.4. Saving Procedure State Information

The processor does not save the contents of the general-purpose registers, segment registers, or
the EFLAGS register on a procedure call. A calling procedure should explicitly save the values
in any of the general-purpose registers that it will need when it resumes execution after a return.
These values can be saved on the stack or in memory in one of the data segments.

The PUSHA and POPA instruction facilitates saving and restoring the contents of the general-
purpose registers. PUSHA pushes the values in all the general-purpose registers on the stack in
the following order: EAX, ECX, EDX, EBX, ESP (the value prior to executing the PUSHA
instruction), EBP, ESI, and EDI. The POPA instruction pops all the register values saved with a
PUSHA instruction (except the ESI value) from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it should restore
them to their former value before executing a return to the calling procedure.

If a calling procedure needs to maintain the state of the EFLAGS register it can save and restore
all or part of the register using the PUSHF/PUSHFD and POPF/POPFD instructions. The
PUSHF instruction pushes the lower word of the EFLAGS register on the stack, while the
PUSHFD instruction pushes the entire register. The POPF instruction pops a word from the
stack into the lower word of the EFLAGS register, while the POPFD instruction pops a double
word from the stack into the register.

6.3.5. Calls to Other Privilege Levels

The IA-32 architecture’s protection mechanism recognizes four privilege levels, numbered from
0 to 3, where greater numbers mean lesser privileges. The primary reason to use these privilege
levels is to improve the reliability of operating systems. For example, Figure 6-3 shows how
privilege levels can be interpreted as rings of protection.

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

Protection Rings

Operating

System

Kernel

Operating System
“

Services (Device
Drivers, Etc.)

Applications

Highest Lowest
0 1 2 3

Privilege Levels

Figure 6-3. Protection Rings

In this example, the highest privilege level O (at the center of the diagram) is used for segments
that contain the most critical code modules in the system, usually the kernel of an operating
system. The outer rings (with progressively lower privileges) are used for segments that contain
code modules for less critical software.

Code modules in lower privilege segments can only access modules operating at higher privi-
lege segments by means of a tightly controlled and protected interface called a gate. Attempts
to access higher privilege segments without going through a protection gate and without having
sufficient access rights causes a general-protection exception (#GP) to be generated.

If an operating system or executive uses this multilevel protection mechanism, a call to a proce-
dure that is in a more privileged protection level than the calling procedure is handled in a
similar manner as a far call (see Section 6.3.2., “Far CALL and RET Operation”). The differ-
ences are as follows:

® The segment selector provided in the CALL instruction references a special data structure
called a call gate descriptor. Among other things, the call gate descriptor provides the
following:

— Access rights information.
— The segment selector for the code segment of the called procedure.

— An offset into the code segment (that is, the instruction pointer for the called
procedure).

6-8

Intelo PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

® The processor switches to a new stack to execute the called procedure. Each privilege level
has its own stack. The segment selector and stack pointer for the privilege level 3 stack are
stored in the SS and ESP registers, respectively, and are automatically saved when a call to
a more privileged level occurs. The segment selectors and stack pointers for the privilege
level 2, 1, and O stacks are stored in a system segment called the task state segment (TSS).

The use of a call gate and the TSS during a stack switch are transparent to the calling procedure,
except when a general-protection exception is raised.

6.3.6. CALL and RET Operation Between Privilege Levels

When making a call to a more privileged protection level, the processor does the following (see
Figure 6-4):

1. Performs an access rights check (privilege check).

2. Temporarily saves (internally) the current contents of the SS, ESP, CS, and EIP registers.

Stack for Stack for
Calling Procedure Called Procedure
Calling SS
Calling ESP
Stack Frame Param 1 Param 1
Before Call [Param 2 Param 2 Stack Frame
Param 3 <—ESP Before Call Param 3 After Call
Calling CS

ESP After Call—>| Calling EIP

Calling SS

<€— ESP After Return Calling ESP
Param 1 Param 1
Param 2 Param 2
Param 3 Param 3

Calling CS

ESP Before Return—>| Calling EIP

Note: On a return, parameters are
released on both stacks if the
correct value is given for the n
operand in the RET n instruction.

Figure 6-4. Stack Switch on a Call to a Different Privilege Level

6-9

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

3. Loads the segment selector and stack pointer for the new stack (that is, the stack for the
privilege level being called) from the TSS into the SS and ESP registers and switches to
the new stack.

4. Pushes the temporarily saved SS and ESP values for the calling procedure’s stack onto the
new stack.

5. Copies the parameters from the calling procedure’s stack to the new stack. (A value in the
call gate descriptor determines how many parameters to copy to the new stack.)

6. Pushes the temporarily saved CS and EIP values for the calling procedure to the new stack.

7. Loads the segment selector for the new code segment and the new instruction pointer from
the call gate into the CS and EIP registers, respectively.

8. Begins execution of the called procedure at the new privilege level.

When executing a return from the privileged procedure, the processor performs these actions:
1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the call.

3. (If the RET instruction has an optional n argument.) Increments the stack pointer by the
number of bytes specified with the n operand to release parameters from the stack. If the
call gate descriptor specifies that one or more parameters be copied from one stack to the
other, a RET n instruction must be used to release the parameters from both stacks. Here,
the n operand specifies the number of bytes occupied on each stack by the parameters. On
a return, the processor increments ESP by n for each stack to step over (effectively
remove) these parameters from the stacks.

4. Restores the SS and ESP registers to their values prior to the call, which causes a switch
back to the stack of the calling procedure.

5. (If the RET instruction has an optional n argument.) Increments the stack pointer by the
number of bytes specified with the n operand to release parameters from the stack (see
explanation in step 3).

6. Resumes execution of the calling procedure.

See Chapter 4, Protection, in the IA-32 Intel Architecture Software Developer’s Manual, Volume
3, for detailed information on calls to privileged levels and the call gate descriptor.

6.4. INTERRUPTS AND EXCEPTIONS

The processor provides two mechanisms for interrupting program execution: interrupts and
exceptions:

® Aninterrupt is an asynchronous event that is typically triggered by an I/O device.

® An exception is a synchronous event that is generated when the processor detects one or
more predefined conditions while executing an instruction. The IA-32 architecture
specifies three classes of exceptions: faults, traps, and aborts.

6-10

Intelo PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

The processor responds to interrupts and exceptions in essentially the same way. When an inter-
rupt or exception is signaled, the processor halts execution of the current program or task and
switches to a handler procedure that has been written specifically to handle the interrupt or
exception condition. The processor accesses the handler procedure through an entry in the inter-
rupt descriptor table (IDT). When the handler has completed handling the interrupt or exception,
program control is returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts and excep-
tions independently from application programs or tasks. Application programs can, however,
access the interrupt and exception handlers incorporated in an operating system or executive
through assembly-language calls. The remainder of this section gives a brief overview of the
processor’s interrupt and exception handling mechanism. See Chapter 5, Interrupt and Excep-
tion Handling in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for a
detailed description of this mechanism.

The TA-32 Architecture defines 17 predefined interrupts and exceptions and 224 user defined
interrupts, which are associated with entries in the IDT. Each interrupt and exception in the IDT
is identified with a number, called a vector. Table 6-1 lists the interrupts and exceptions with
entries in the IDT and their respective vector numbers. Vectors 0O through 8, 10 through 14, and
16 through 19 are the predefined interrupts and exceptions, and vectors 32 through 255 are the
user-defined interrupts, called maskable interrupts.

Note that the processor defines several additional interrupts that do not point to entries in the
IDT; the most notable of these interrupts is the SMI interrupt. See “Exception and Interrupt
Vectors” in Chapter 5 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3,
for more information about the interrupts and exceptions that the IA-32 Architecture supports.

When the processor detects an interrupt or exception, it does one of the following things:
® Executes an implicit call to a handler procedure.

® Executes an implicit call to a handler task.

6.4.1. Call and Return Operation for Interrupt or Exception
Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to another
protection level (see Section 6.3.6., “CALL and RET Operation Between Privilege Levels”).
Here, the interrupt vector references one of two kinds of gates: an interrupt gate or a trap gate.
Interrupt and trap gates are similar to call gates in that they provide the following information:

® Access rights information.
® The segment selector for the code segment that contains the handler procedure.
® An offset into the code segment to the first instruction of the handler procedure.

The difference between an interrupt gate and a trap gate is as follows. If an interrupt or exception
handler is called through an interrupt gate, the processor clears the interrupt enable (IF) flag in
the EFLAGS register to prevent subsequent interrupts from interfering with the execution of the
handler. When a handler is called through a trap gate, the state of the IF flag is not changed.

6-11

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Table 6-1. Exceptions and Interrupts

Vector No. | Mhemonic Description Source
0 #DE Divide Error DIV and IDIV instructions.
1 #DB Debug Any code or data reference.
2 NMI Interrupt Non-maskable external interrupt.
3 #BP Breakpoint INT 3 instruction.
4 #OF Overflow INTO instruction.
5 #BR BOUND Range Exceeded BOUND instruction.
6 #UD Invalid Opcode (UnDefined UD2 instruction or reserved opcode.’
Opcode)
7 #NM Device Not Available (No Math Floating-point or WAIT/FWAIT instruction.
Coprocessor)
8 #DF Double Fault Any instruction that can generate an
exception, an NMI, or an INTR.
9 #MF CoProcessor Segment Overrun | Floating-point instruction.?
(reserved)
10 #TS Invalid TSS Task switch or TSS access.
11 #NP Segment Not Present Loading segment registers or accessing
system segments.
12 #SS Stack Segment Fault Stack operations and SS register loads.
13 #GP General Protection Any memory reference and other
protection checks.
14 #PF Page Fault Any memory reference.
15 (Intel reserved. Do not use.)
16 #MF Floating-Point Error (Math Fault) | Floating-point or WAIT/FWAIT instruction.
17 #AC Alignment Check Any data reference in memory.3
18 #MC Machine Check Error codes (if any) and source are model
dependent.*
19 #XF SIMD Floating-Point Exception® | SIMD Floating-Point Instruction
20-31 (Intel reserved. Do not use.)
32-255 Maskable Interrupts External interrupt from INTR pin or INT n

instruction.

1. The UD2 instruction was introduced in the Pentium Pro processor.

2. IA-32 processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.
4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.

5. This exception was introduced in the Pentium Ill processor.

6-12

intel.

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

If the code segment for the handler procedure has the same privilege level as the currently
executing program or task, the handler procedure uses the current stack; if the handler executes
at a more privileged level, the processor switches to the stack for the handler’s privilege level.

If no stack switch occurs, the processor does the following when calling an interrupt or excep-

tion handler (see Figure 6-5):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order) on the

stack.

2. Pushes an error code (if appropriate) on the stack.

3. Loads the segment selector for the new code segment and the new instruction pointer

(from the interrupt gate or trap gate) into the CS and EIP registers, respectively.
4. 1If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

Begins execution of the handler procedure at the new privilege level.

Stack Usage with No
Privilege-Level Change

Interrupted Procedure’s
and Handler’s Stack

~<— ESP Before

EFLAGS

Transfer to Handler

CSs

EIP

Error Code

«——ESP After
Transfer to Handler

Stack

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

<«——ESP Before

Transfer to Handler

ESP After——>

Transfer to Handler

Handler’s Stack

SS

ESP

EFLAGS

CSs

EIP

Error Code

Figure 6-5. Stack Usage on Transfers to Interrupt and Exception Handling Routines

6-13

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

If a stack switch does occur, the processor does the following:

1.

6.
7.

Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS, and EIP
registers.

Loads the segment selector and stack pointer for the new stack (that is, the stack for the
privilege level being called) from the TSS into the SS and ESP registers and switches to
the new stack.

Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the interrupted
procedure’s stack onto the new stack.

Pushes an error code on the new stack (if appropriate).

Loads the segment selector for the new code segment and the new instruction pointer
(from the interrupt gate or trap gate) into the CS and EIP registers, respectively.

If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

Begins execution of the handler procedure at the new privilege level.

A return from an interrupt or exception handler is initiated with the IRET instruction. The IRET
instruction is similar to the far RET instruction, except that it also restores the contents of the
EFLAGS register for the interrupted procedure:

When executing a return from an interrupt or exception handler from the same privilege level as
the interrupted procedure, the processor performs these actions:

1.
2.
3.
4.

Restores the CS and EIP registers to their values prior to the interrupt or exception.
Restores the EFLAGS register.
Increments the stack pointer appropriately

Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different privilege level
than the interrupted procedure, the processor performs these actions:

1.

2
3.
4

6-14

Performs a privilege check.
Restores the CS and EIP registers to their values prior to the interrupt or exception.
Restores the EFLAGS register.

Restores the SS and ESP registers to their values prior to the interrupt or exception,
resulting in a stack switch back to the stack of the interrupted procedure.

Resumes execution of the interrupted procedure.

Intelo PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.4.2. Calls to Interrupt or Exception Handler Tasks

Interrupt and exception handler routines can also be executed in a separate task. Here, an inter-
rupt or exception causes a task switch to a handler task. The handler task is given its own address
space and (optionally) can execute at a higher protection level than application programs or
tasks.

The switch to the handler task is accomplished with an implicit task call that references a task
gate descriptor. The task gate provides access to the address space for the handler task. As part
of the task switch, the processor saves complete state information for the interrupted program or
task. Upon returning from the handler task, the state of the interrupted program or task is
restored and execution continues. See Chapter 5, Interrupt and Exception Handling, in the IA-
32 Intel Architecture Software Developer’s Manual, Volume 3, for a detailed description of the
processor’s mechanism for handling interrupts and exceptions through handler tasks.

6.4.3. Interrupt and Exception Handling in Real-Address Mode

When operating in real-address mode, the processor responds to an interrupt or exception with
an implicit far call to an interrupt or exception handler. The processor uses the interrupt or
exception vector number as an index into an interrupt table. The interrupt table contains instruc-
tion pointers to the interrupt and exception handler procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS register, and an
optional error code on the stack before switching to the handler procedure.

A return from the interrupt or exception handler is carried out with the IRET instruction.

See Chapter 16, 8086 Emulation, in the IA-32 Intel Architecture Software Developer’s Manual,
Volume 3, for more information on handling interrupts and exceptions in real-address mode.

6.4.4. INT n,INTO, INT 3, and BOUND Instructions

The INT n, INTO, INT 3, and BOUND instructions allow a program or task to explicitly call an
interrupt or exception handler. The INT # instruction uses an interrupt vector as an argument,
which allows a program to call any interrupt handler.

The INTO instruction explicitly calls the overflow exception (#OF) handler if the overflow flag
(OF) in the EFLAGS register is set. The OF flag indicates overflow on arithmetic instructions,
but it does not automatically raise an overflow exception. An overflow exception can only be
raised explicitly in either of the following ways:

® Execute the INTO instruction.

® Test the OF flag and execute the INT #n instruction with an argument of 4 (the vector
number of the overflow exception) if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for overflow at
specific places in the instruction stream.

The INT 3 instruction explicitly calls the breakpoint exception (#BP) handler.

6-15

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) handler
if an operand is found to be not within predefined boundaries in memory. This instruction is
provided for checking references to arrays and other data structures. Like the overflow
exception, the BOUND-range exceeded exception can only be raised explicitly with the
BOUND instruction or the INT 7 instruction with an argument of 5 (the vector number of the
bounds-check exception). The processor does not implicitly perform bounds checks and raise
the BOUND-range exceeded exception.

6.4.5. Handling Floating-Point Exceptions

When operating on individual or packed floating-point values, the IA-32 architecture supports
a set of six floating-point exceptions. These exceptions can be generated during operations
performed by the x87 FPU instructions or by the SSE and SSE2 instructions. When an x87 FPU
instruction generates one or more of these exceptions, it in turn generates an floating-point error
exception (#MF); when an SSE and SSE2 instruction generates a floating-point exception, it in
turn generates a SIMD floating-point exception (#XF). See the following sections for further
descriptions of the floating-point exceptions, how they are generated, and how they are handled:

® Section 4.9.1., “Floating-Point Exception Conditions” and Section 4.9.3., “Typical Actions
of a Floating-Point Exception Handler”.

® Section 8.4., “x87 FPU Floating-Point Exception Handling” and Section 8.5., “x87 FPU
Floating-Point Exception Conditions”.

® Section 11.5.1., “SIMD Floating-Point Exceptions”.

6.5. PROCEDURE CALLS FOR BLOCK-STRUCTURED
LANGUAGES

The IA-32 architecture supports an alternate method of performing procedure calls with the
ENTER (enter procedure) and LEAVE (leave procedure) instructions. These instructions auto-
matically create and release, respectively, stack frames for called procedures. The stack frames
have predefined spaces for local variables and the necessary pointers to allow coherent returns
from called procedures. They also allow scope rules to be implemented so that procedures can
access their own local variables and some number of other variables located in other stack
frames.

The ENTER and LEAVE instructions offer two benefits:

® They provide machine-language support for implementing block-structured languages,
such as C and Pascal.

® They simplify procedure entry and exit in compiler-generated code.

6-16

Intelo PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.5.1. ENTER Instruction

The ENTER instruction creates a stack frame compatible with the scope rules typically used in
block-structured languages. In block-structured languages, the scope of a procedure is the set of
variables to which it has access. The rules for scope vary among languages. They may be based
on the nesting of procedures, the division of the program into separately compiled files, or some
other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be reserved
on the stack for dynamic storage for the procedure being called. Dynamic storage is the memory
allocated for variables created when the procedure is called, also known as automatic variables.
The second parameter is the lexical nesting level (from O to 31) of the procedure. The nesting
level is the depth of a procedure in a hierarchy of procedure calls. The lexical level is unrelated
to either the protection privilege level or to the I/O privilege level of the currently running
program or task.

The ENTER instruction in the following example, allocates 2 Kbytes of dynamic storage on the
stack and sets up pointers to two previous stack frames in the stack frame for this procedure.

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into the new
stack frame from the preceding frame. A stack frame pointer is a doubleword used to access the
variables of a procedure. The set of stack frame pointers used by a procedure to access the
variables of other procedures is called the display. The first doubleword in the display is a
pointer to the previous stack frame. This pointer is used by a LEAVE instruction to undo the
effect of an ENTER instruction by discarding the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic local
variables for the procedure by decrementing the contents of the ESP register by the number of
bytes specified in the first parameter. This new value in the ESP register serves as the initial top-
of-stack for all PUSH and POP operations within the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register
pointing to the first doubleword in the display. Because stacks grow down, this is actually the
doubleword with the highest address in the display. Data manipulation instructions that specify
the EBP register as a base register automatically address locations within the stack segment
instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level is
0, the non-nested form is used. The non-nested form pushes the contents of the EBP register on
the stack, copies the contents of the ESP register into the EBP register, and subtracts the first
operand from the contents of the ESP register to allocate dynamic storage. The non-nested form
differs from the nested form in that no stack frame pointers are copied. The nested form of the
ENTER instruction occurs when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction. STORAGE
is the number of bytes of dynamic storage to allocate for local variables, and LEVEL is the
lexical nesting level.

PUSH EBP;
FRAME_PTR « ESP;

6-17

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

IFLEVEL >0
THEN
DO (LEVEL — 1) times
EBP « EBP - 4;
PUSH Pointer(EBP); (* doubleword pointed to by EBP *)
OD;
PUSH FRAME_PTR;
Fl;
EBP « FRAME_PTR;
ESP « ESP — STORAGE;

The main procedure (in which all other procedures are nested) operates at the highest lexical
level, level 1. The first procedure it calls operates at the next deeper lexical level, level 2. A level
2 procedure can access the variables of the main program, which are at fixed locations specified
by the compiler. In the case of level 1, the ENTER instruction allocates only the requested
dynamic storage on the stack because there is no previous display to copy.

A procedure which calls another procedure at a lower lexical level gives the called procedure
access to the variables of the caller. The ENTER instruction provides this access by placing a
pointer to the calling procedure’s stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give access to
its variables. In this case, the ENTER instruction copies only that part of the display from the
calling procedure which refers to previously nested procedures operating at higher lexical levels.
The new stack frame does not include the pointer for addressing the calling procedure’s stack
frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the same lexical
level. In this case, each succeeding iteration of the re-entrant procedure can address only its own
variables and the variables of the procedures within which it is nested. A re-entrant procedure
always can address its own variables; it does not require pointers to the stack frames of previous
iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER
instruction makes certain that procedures access only those variables of higher lexical levels, not
those at parallel lexical levels (see Figure 6-6).

6-18

Intelo PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Main (Lexical Level 1)

Procedure A (Lexical Level 2)

| Procedure B (Lexical Level 3) |

Procedure C (Lexical Level 3)

I Procedure D (Lexical Level 4) |

Figure 6-6. Nested Procedures

Block-structured languages can use the lexical levels defined by ENTER to control access to the
variables of nested procedures. In Figure 6-6, for example, if procedure A calls procedure B
which, in turn, calls procedure C, then procedure C will have access to the variables of the
MAIN procedure and procedure A, but not those of procedure B because they are at the same
lexical level. The following definition describes the access to variables for the nested procedures
in Figure 6-6.

1. MAIN has variables at fixed locations.
2. Procedure A can access only the variables of MAIN.

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B cannot
access the variables of procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. procedure C cannot
access the variables of procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN. Procedure
D cannot access the variables of procedure B.

In Figure 6-7, an ENTER instruction at the beginning of the MAIN procedure creates three
doublewords of dynamic storage for MAIN, but copies no pointers from other stack frames. The
first doubleword in the display holds a copy of the last value in the EBP register before the
ENTER instruction was executed. The second doubleword holds a copy of the contents of the
EBP register following the ENTER instruction. After the instruction is executed, the EBP
register points to the first doubleword pushed on the stack, and the ESP register points to the last
doubleword in the stack frame.

When MAIN calls procedure A, the ENTER instruction creates a new display (see Figure 6-8).
The first doubleword is the last value held in MAIN’s EBP register. The second doubleword is
a pointer to MAIN’s stack frame which is copied from the second doubleword in MAIN’s
display. This happens to be another copy of the last value held in MAIN’s EBP register. Proce-
dure A can access variables in MAIN because MAIN is at level 1.

6-19

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

Therefore the base address for the dynamic storage used in MAIN is the current address in the
EBP register, plus four bytes to account for the saved contents of MAIN’s EBP register. All
dynamic variables for MAIN are at fixed, positive offsets from this value.

Old EBP ~<«— EBP
Display -
Main’s EBP
Dynamic
Storage
<—ESP

Figure 6-7. Stack Frame after Entering the MAIN Procedure

Old EBP
Main’s EBP
. Main’s EBP <— EBP
Display -
Main’s EBP
Procedure A's EBP
Dynamic
torage
-<€— ESP

Figure 6-8. Stack Frame after Entering Procedure A

When procedure A calls procedure B, the ENTER instruction creates a new display (see Figure
6-9). The first doubleword holds a copy of the last value in procedure A’s EBP register. The
second and third doublewords are copies of the two stack frame pointers in procedure A’s
display. Procedure B can access variables in procedure A and MAIN by using the stack frame
pointers in its display.

6-20

Intelo PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

When procedure B calls procedure C, the ENTER instruction creates a new display for proce-
dure C (see Figure 6-10). The first doubleword holds a copy of the last value in procedure B’s
EBP register. This is used by the LEAVE instruction to restore procedure B’s stack frame. The
second and third doublewords are copies of the two stack frame pointers in procedure A’s
display. If procedure C were at the next deeper lexical level from procedure B, a fourth double-
word would be copied, which would be the stack frame pointer to procedure B’s local variables.

Note that procedure B and procedure C are at the same level, so procedure C is not intended to
access procedure B’s variables. This does not mean that procedure C is completely isolated from
procedure B; procedure C is called by procedure B, so the pointer to the returning stack frame
is a pointer to procedure B's stack frame. In addition, procedure B can pass parameters to proce-
dure C either on the stack or through variables global to both procedures (that is, variables in the
scope of both procedures).

Old EBP
Main’s EBP

Main’s EBP
Main’s EBP
Procedure A's EBP

IR Procedure A's EBP -<— EBP
. Main’s EBP
Display
Procedure A's EBP
| Procedure B's EBP
Dynamic
Storage
| <—ESP

Figure 6-9. Stack Frame after Entering Procedure B

6-21

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS Intel®

Old EBP
Main’s EBP

Main’s EBP
Main’s EBP
Procedure A's EBP

Procedure A’'s EBP
Main’s EBP
Procedure A's EBP
Procedure B’s EBP

| Procedure Bs EBP | <€— EBP
. Main’s EBP
Display
Procedure A's EBP
L Procedure C’s EBP
Dynamic
Storage
| <«—ESP

Figure 6-10. Stack Frame after Entering Procedure C

6.5.2. LEAVE Instruction

The LEAVE instruction, which does not have any operands, reverses the action of the previous
ENTER instruction. The LEAVE instruction copies the contents of the EBP register into the ESP
register to release all stack space allocated to the procedure. Then it restores the old value of the
EBP register from the stack. This simultaneously restores the ESP register to its original value.
A subsequent RET instruction then can remove any arguments and the return address pushed on
the stack by the calling program for use by the procedure.

6-22

7

Programming With
the Basic Instruction
Set

CHAPTER 7
PROGRAMMING WITH THE
GENERAL-PURPOSE INSTRUCTIONS

The general-purpose instructions are a subset of the IA-32 instructions that represent the funda-
mental or basic instruction set for the Intel IA-32 processors. These instructions were introduced
into the IA-32 architecture with the first IA-32 processors (the Intel 8086 and 8088). Additional
instructions were added to this general-purpose instruction set in subsequent families of IA-32
processors (the Intel 286, Intel386, Intel486, Pentium, Pentium Pro, and Pentium II processors).

The general-purpose instructions perform basic data movement, memory addressing, arithmetic
and logical, program flow control, input/output, and string operations on a set of integer, pointer,
and BCD data types.

This chapter provides an overview of the general-purpose instructions. Chapter 3, Instruction
Set Reference, of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2 gives
detailed descriptions of these instructions.

7.1. PROGRAMMING ENVIRONMENT FOR THE GENERAL-
PURPOSE INSTRUCTIONS

The programming environment for the general-purpose instructions consists of the set of regis-
ters and address space that make up the IA-32 architecture’s basic execution environment (see
Figure 7-1) and a set of data types. The basic execution environment includes the following
items:

® General-purpose registers. The eight 32-bit general-purpose registers (see Figure 3-4)
are used along with the existing IA-32 addressing modes to address operands in memory.
These registers are referenced by the names EAX, EBX, ECX, EDX, EBP, ESI EDI, and
ESP.

® Segment registers. The six 16-bit segment registers contain segment pointers for use in
accessing memory. These registers are referenced by the names CS, DS, SS, ES, FS, and
GS.

® EFLAGS register. This 32-bit register (see Figure 3-7) is used to provide status and
control for basic arithmetic, compare, and system operations.

® EIP register. This 32-bit register contains the current instruction pointer.

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

General-Purpose
Registers
Eight 32-Bit

Segment
Registers
Six 16-bit

EFLAGS Register |

32-bits

|

EIP (Instruction Pointer Register) |

32 Bits

Address Space
2% 1

0

Figure 7-1. Basic Execution Environment for General-Purpose Instructions

The general-purpose instructions operate on the following data types:

7.2.

7-2

Bytes, words, and doublewords (see Figure 4-1).

Signed and unsigned byte, word, and double word integers (see Figure 4-3).

Near and far pointers (see Figure 4-4).
Bit fields (see Figure 4-5).
BCD integers (see Figure 4-8).

Data transfer

Binary arithmetic

Decimal arithmetic

Logical

Shift and rotate
Bit and byte
Control transfer
String

Flag control
Segment register

Miscellaneous

SUMMARY OF THE GENERAL-PURPOSE INSTRUCTIONS

The general purpose instructions are divided into 11 groups:

Intelo PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

7.2.1. Data Movement Instructions

The data movement instructions move bytes, words, doublewords, or quadwords both between
memory and the processor’s registers and between registers. These instructions are divided into
four subgroups:

® General data movement.
® Exchange.
® Stack manipulation.

® Type conversion.

7.21.1. GENERAL DATA MOVEMENT INSTRUCTIONS

Move instructions. The MOV (move) and CMOVcc (conditional move) instructions transfer
data between memory and registers or between registers.

The MOV instruction performs basic load data and store data operations between memory and
the processor’s registers and data movement operations between registers. It handles data trans-
fers along the paths listed in Table 7-1. (See “MOV—Move to/from Control Registers” and
“MOV—DMove to/from Debug Registers” in Chapter 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2, for information on moving data to and from the control and
debug registers.)

The MOV instruction cannot move data from one memory location to another or from one
segment register to another segment register. Memory-to-memory moves can be performed with
the MOVS (string move) instruction (see Section 7.2.8., “String Operations”).

Conditional move instructions. The CMOVcc instructions are a group of instructions that
check the state of the status flags in the EFLAGS register and perform a move operation if the
flags are in a specified state (or condition). These instructions can be used to move a 16- or 32-
bit value from memory to a general-purpose register or from one general-purpose register to
another. The flag state being tested for each instruction is specified with a condition code (cc)
that is associated with the instruction. If the condition is not satisfied, a move is not performed
and execution continues with the instruction following the CMOVcc instruction.

7-3

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

Table 7-1. Move Instruction Operations

Type of Data Movement Source — Destination

From memory to a register Memory location — General-purpose register
Memory location — Segment register

From a register to memory General-purpose register — Memory location
Segment register — Memory location

Between registers General-purpose register — General-purpose register
General-purpose register — Segment register
Segment register — General-purpose register
General-purpose register — Control register

Control register — General-purpose register
General-purpose register — Debug register

Debug register — General-purpose register

Immediate data to a register Immediate — General-purpose register

Immediate data to memory Immediate — Memory location

Table 7-4 shows the mnemonics for the CMOVcc instructions and the conditions being tested
for each instruction. The condition code mnemonics are appended to the letters “CMOV” to
form the mnemonics for the CMOVcc instructions. The instructions listed in Table 7-4 as pairs
(for example, CMOVA/CMOVNBE) are alternate names for the same instruction. The assem-
bler provides these alternate names to make it easier to read program listings.

The CMOVcc instructions are useful for optimizing small IF constructions. They also help elim-
inate branching overhead for IF statements and the possibility of branch mispredictions by the
processor.

These conditional move instructions are supported only in the P6 family, Pentium 4, and Intel
Xeon processors. Software can check if the CMOVcc instructions are supported by checking the
processor’s feature information with the CPUID instruction (see “CPUID—CPU Identification”
in Chapter 3 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2).

7.2.1.2. EXCHANGE INSTRUCTIONS

The exchange instructions swap the contents of one or more operands and, in some cases,
performs additional operations such as asserting the LOCK signal or modifying flags in the
EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruction takes
the place of three MOV instructions and does not require a temporary location to save the
contents of one operand location while the other is being loaded. When a memory operand is
used with the XCHG instruction, the processor’s LOCK signal is automatically asserted. This
instruction is thus useful for implementing semaphores or similar data structures for process
synchronization. (See “Bus Locking” in Chapter 7 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for more information on bus locking.)

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register operand. Bit
positions O through 7 are exchanged with 24 through 31, and bit positions 8 through 15 are
exchanged with 16 through 23. Executing this instruction twice in a row leaves the register with

7-4

intel.

the same value as before. The BSWAP instruction is useful for converting between “big-endian”
and “little-endian” data formats. This instruction also speeds execution of decimal arithmetic.
(The XCHG instruction can be used to swap the bytes in a word.)

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

Table 7-2. Conditional Move Instructions

Instruction Mnemonic

Status Flag States

Condition Description

Unsigned Conditional Moves

CMOVA/CMOVNBE (CF or ZF)=0 Above/not below or equal
CMOVAE/CMOVNB CF=0 Above or equal/not below
CMOVNC CF=0 Not carry
CMOVB/CMOVNAE CF=1 Below/not above or equal
CMOVC CF=1 Carry
CMOVBE/CMOVNA (CF or ZF)=1 Below or equal/not above
CMOVE/CMOVZ ZF=1 Equal/zero
CMOVNE/CMOVNZ ZF=0 Not equal/not zero
CMOVP/CMOVPE PF=1 Parity/parity even
CMOVNP/CMOVPO PF=0 Not parity/parity odd

Signed Conditional Moves

CMOVGE/CMOVNL (SF xor OF)=0 Greater or equal/not less
CMOVL/CMOVNGE (SF xor OF)=1 Less/not greater or equal
CMOVLE/CMOVNG ((SF xor OF) or ZF)=1 Less or equal/not greater
CMOVO OF=1 Overflow

CMOVNO OF=0 Not overflow

CMOVS SF=1 Sign (negative)
CMOVNS SF=0 Not sign (non-negative)

The XADD (exchange and add) instruction swaps two operands and then stores the sum of the
two operands in the destination operand. The status flags in the EFLAGS register indicate the
result of the addition. This instruction can be combined with the LOCK prefix (see
“LOCK—Assert LOCK# Signal Prefix” in Chapter 3 of the [A-32 Intel Architecture Software
Developer’s Manual, Volume 2) in a multiprocessing system to allow multiple processors to
execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHGS8B (compare and exchange 8 bytes)
instructions are used to synchronize operations in systems that use multiple processors. The
CMPXCHG instruction requires three operands: a source operand in a register, another source
operand in the EAX register, and a destination operand. If the values contained in the destination
operand and the EAX register are equal, the destination operand is replaced with the value of
the other source operand (the value not in the EAX register). Otherwise, the original value of the
destination operand is loaded in the EAX register. The status flags in the EFLAGS register

7-5

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

reflect the result that would have been obtained by subtracting the destination operand from the
value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. It checks
to see if a semaphore is free. If the semaphore is free it is marked allocated, otherwise it gets the
ID of the current owner. This is all done in one uninterruptible operation. In a single-processor
system, the CMPXCHG instruction eliminates the need to switch to protection level O (to disable
interrupts) before executing multiple instructions to test and modify a semaphore.

For multiple processor systems, CMPXCHG can be combined with the LOCK prefix to perform
the compare and exchange operation atomically. (See “Locked Atomic Operations” in Chapter
7 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for more information
on atomic operations.)

The CMPXCHGSB instruction also requires three operands: a 64-bit value in EDX:EAX, a
64-bit value in ECX:EBX, and a destination operand in memory. The instruction compares the
64-bit value in the EDX:EAX registers with the destination operand. If they are equal, the 64-bit
value in the ECX:EBX register is stored in the destination operand. If the EDX:EAX register
and the destination are not equal, the destination is loaded in the EDX:EAX register. The
CMPXCHGSB instruction can be combined with the LOCK prefix to perform the operation
atomically.

7.2.1.3. STACK MANIPULATION INSTRUCTIONS

The PUSH, POP, PUSHA (push all registers), and POPA (pop all registers) instructions move
data to and from the stack. The PUSH instruction decrements the stack pointer (contained in the
ESP register), then copies the source operand to the top of stack (see Figure 7-2). It operates on
memory operands, immediate operands, and register operands (including segment registers).
The PUSH instruction is commonly used to place parameters on the stack before calling a proce-
dure. It can also be used to reserve space on the stack for temporary variables.

Stack
Before Pushing Doubleword After Pushing Doubleword
Gsrtgv(\:llt(h 31 0 31 0
‘ n ~<—ESP
n-4 Doubleword Value |<—ESP
-8

Figure 7-2. Operation of the PUSH Instruction

The PUSHA instruction saves the contents of the eight general-purpose registers on the stack
(see Figure 7-3). This instruction simplifies procedure calls by reducing the number of instruc-
tions required to save the contents of the general-purpose registers. The registers are pushed on
the stack in the following order: EAX, ECX, EDX, EBX, the initial value of ESP before EAX
was pushed, EBP, ESI, and EDI.

7-6

Intelo PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

Stack
Before Pushing Registers After Pushing Registers
Stack 31 0 31 0
Growth
n
n-4 << ESP
n-8 EAX
n-12 ECX
n-16 EDX
n-20 EBX
n-24 Old ESP
n-28 EBP
n-32 ESI
n-36 EDI < ESP

Figure 7-3. Operation of the PUSHA Instruction

The POP instruction copies the word or doubleword at the current top of stack (indicated by the
ESP register) to the location specified with the destination operand, and then increments the ESP
register to point to the new top of stack (see Figure 7-4). The destination operand may specify a
general-purpose register, a segment register, or a memory location.

Stack
Before Popping Doubleword After Popping Doubleword
Stack
Growth 31 0 31 0
n
n-4 << ESP
n-8 Doubleword Value <—ESP

Figure 7-4. Operation of the POP Instruction

The POPA instruction reverses the effect of the PUSHA instruction. It pops the top eight words
or doublewords from the top of the stack into the general-purpose registers, except for the ESP
register (see Figure 7-5). If the operand-size attribute is 32, the doublewords on the stack are
transferred to the registers in the following order: EDI, ESI, EBP, ignore doubleword, EBX,
EDX, ECX, and EAX. The ESP register is restored by the action of popping the stack. If the
operand-size attribute is 16, the words on the stack are transferred to the registers in the
following order: DI, SI, BP, ignore word, BX, DX, CX, and AX.

7-7

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

Stack
Before Popping Registers After Popping Registers
Stack 0 31 0 31
Growth
‘ n-4 < ESP
n-8 EAX

n-12 ECX

n-16 EDX

n-20 EBX

n-24 Ignored

n-28 EBP

n-32 ESI

n- 36 EDI < ESP

Figure 7-5. Operation of the POPA Instruction

7.2.1.4. TYPE CONVERSION INSTRUCTIONS

The type conversion instructions convert bytes into words, words into doublewords, and double-
words into quadwords. These instructions are especially useful for converting integers to larger
integer formats, because they perform sign extension (see Figure 7-6).

Two kinds of type conversion instructions are provided: simple conversion and move and
convert.

Before Sign

15 0
SN N[N W[N] N]] Betore
Extension

After Sign

31 15 0
[STS[S[S[s]o[s 5[s[5 [o[s]o[s W[WINWIN W WNWIN [N] A% S
Extension

Figure 7-6. Sign Extension

Simple conversion. The CBW (convert byte to word), CWDE (convert word to doubleword
extended), CWD (convert word to doubleword), and CDQ (convert doubleword to quadword)
instructions perform sign extension to double the size of the source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit position
of the upper byte of the AX register. The CWDE instruction copies the sign (bit 15) of the word
in the AX register into every bit position of the high word of the EAX register.

7-8

Intelo PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

The CWD instruction copies the sign (bit 15) of the word in the AX register into every bit posi-
tion in the DX register. The CDQ instruction copies the sign (bit 31) of the doubleword in the
EAX register into every bit position in the EDX register. The CWD instruction can be used to
produce a doubleword dividend from a word before a word division, and the CDQ instruction
can be used to produce a quadword dividend from a doubleword before doubleword division.

Move with sign or zero extension. The MOVSX (move with sign extension) and MOVZX
(move with zero extension) instructions move the source operand into a register then perform
the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8- or 16-bit value to 32-bit
value by sign extending the source operand, as shown in Figure 7-6. The MOVZX instruction
extends an 8-bit value to a 16-bit value or an 8- or 16-bit value to 32-bit value by zero extending
the source operand.

7.2.2. Binary Arithmetic Instructions

The binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded as signed
or unsigned binary integers. Operations include the add, subtract, multiply, and divide as well
as increment, decrement, compare, and change sign (negate). The binary arithmetic instructions
may also be used in algorithms that operate on decimal (BCD) values.

7.2.2.1. ADDITION AND SUBTRACTION INSTRUCTIONS

The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and SBB
(subtract integers with borrow) instructions perform addition and subtraction operations on
signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands.

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag is set. This
instruction is used to propagate a carry when adding numbers in stages.

The SUB instruction computes the difference of two integer operands.

The SBB instruction computes the difference of two integer operands, minus 1 if the CF flag is
set. This instruction is used to propagate a borrow when subtracting numbers in stages.

7.2.2.2. INCREMENT AND DECREMENT INSTRUCTIONS

The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from an unsigned
integer operand, respectively. A primary use of these instructions is for implementing counters.

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

7.2.2.3. COMPARISON AND SIGN CHANGE INSTRUCTION

The CMP (compare) instruction computes the difference between two integer operands and
updates the OF, SF, ZF, AF, PF, and CF flags according to the result. The source operands are
not modified, nor is the result saved. The CMP instruction is commonly used in conjunction with
a Jec (jump) or SETcc (byte set on condition) instruction, with the latter instructions performing
an action based on the result of a CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The effect of the
NEG instruction is to change the sign of a two’s complement operand while keeping its
magnitude.

7.2.2.4. MULTIPLICATION AND DIVIDE INSTRUCTIONS

The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL signed
multiply), and two divide instructions, DIV (unsigned divide) and IDIV (signed divide).

The MUL instruction multiplies two unsigned integer operands. The result is computed to twice
the size of the source operands (for example, if word operands are being multiplied, the result is
a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed to twice
the size of the source operands; however, in some cases the result is truncated to the size of the
source operands (see “IMUL—Signed Multiply” in Chapter 3 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 2).

The DIV instruction divides one unsigned operand by another unsigned operand and returns a
quotient and a remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a signed
division.

7.2.3. Decimal Arithmetic Instructions

Decimal arithmetic can be performed by combining the binary arithmetic instructions ADD,
SUB, MUL, and DIV (discussed in Section 7.2.2., “Binary Arithmetic Instructions”) with the
decimal arithmetic instructions. The decimal arithmetic instructions are provided to carry out
the following operations:

® To adjust the results of a previous binary arithmetic operation to produce a valid BCD
result.

® To adjust the operands of a subsequent binary arithmetic operation so that the operation
will produce a valid BCD result.

These instructions operate only on both packed and unpacked BCD values.

7-10

Intelo PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

7.2.3.1. PACKED BCD ADJUSTMENT INSTRUCTIONS

The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction) instructions
adjust the results of operations performed on packed BCD integers (see Section 4.7., “BCD
and Packed BCD Integers”). Adding two packed BCD values requires two instructions: an ADD
instruction followed by a DAA instruction. The ADD instruction adds (binary addition) the two
values and stores the result in the AL register. The DAA instruction then adjusts the value in the
AL register to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry
occurred as the result of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction followed
by a DAS instruction. The SUB instruction subtracts (binary subtraction) one BCD value from
another and stores the result in the AL register. The DAS instruction then adjusts the value in
the AL register to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal
borrow occurred as the result of the subtraction.

7.2.3.2. UNPACKED BCD ADJUSTMENT INSTRUCTIONS

The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM (ASCII
adjust after multiplication), and AAD (ASCII adjust before division) instructions adjust the
results of arithmetic operations performed in unpacked BCD values (see Section 4.7., “BCD
and Packed BCD Integers”). All these instructions assume that the value to be adjusted is stored
in the AL register or, in one instance, the AL and AH registers.

The AAA instruction adjusts the contents of the AL register following the addition of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value and
stores the result in the AL register in unpacked BCD format (the decimal number is stored in the
lower 4 bits of the register and the upper 4 bits are cleared). If a decimal carry occurred as a result
of the addition, the CF flag is set and the contents of the AH register are incremented by 1.

The AAS instruction adjusts the contents of the AL register following the subtraction of two
unpacked BCD values. Here again, a binary value is converted into an unpacked BCD value. If
a borrow was required to complete the decimal subtract, the CF flag is set and the contents of
the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value and
stores the least significant digit of the result in the AL register (in unpacked BCD format) and
the most significant digit, if there is one, in the AH register (also in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided with the
DIV instruction, a valid unpacked BCD result is obtained. The instruction converts the BCD
value in registers AH (most significant digit) and AL (least significant digit) into a binary value
and stores the result in register AL. When the value in AL is divided by an unpacked BCD value,
the quotient and remainder will be automatically encoded in unpacked BCD format.

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

7.2.4. Logical Instructions

The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard Boolean
operations for which they are named. The AND, OR, and XOR instructions require two oper-
ands; the NOT instruction operates on a single operand.

7.2.5. Shift and Rotate Instructions

The shift and rotate instructions rearrange the bits within an operand. These instructions fall into
the following classes:

® Shift.
® Double shift.

® Rotate.

7.2.5.1. SHIFT INSTRUCTIONS

The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), SHR (shift
logical right) instructions perform an arithmetic or logical shift of the bits in a byte, word, or
doubleword.

The SAL and SHL instructions perform the same operation (see Figure 7-7). They shift the
source operand left by from 1 to 31 bit positions. Empty bit positions are cleared. The CF flag
is loaded with the last bit shifted out of the operand.

Initial State
CF Operand

‘10001000100010001000100010001111|

After 1-bit SHL/SAL Instruction

4—{00010001000100010001000100011110|¢0

After 10-bit SHL/SAL Instruction

E‘—{00100010001000100011110000000000‘«0

Figure 7-7. SHL/SAL Instruction Operation

The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 7-8).
As with the SHL/SAL instruction, the empty bit positions are cleared and the CF flag is loaded
with the last bit shifted out of the operand.

7-12

Intelo PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

Initial State Operand CF

‘10001000100010001000100010001111‘
After 1-bit SHR Instruction

O*‘01000100010001000100010001000111}—>

After 10-bit SHR Instruction

O*‘00000000001000100010001000100010}—>lz|

Figure 7-8. SHR Instruction Operation

The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 7-9).
This instruction differs from the SHR instruction in that it preserves the sign of the source
operand by clearing empty bit positions if the operand is positive or setting the empty bits if the
operand is negative. Again, the CF flag is loaded with the last bit shifted out of the operand.

The SAR and SHR instructions can also be used to perform division by powers of 2 (see
“SAL/SAR/SHL/SHR—Shift Instructions” in Chapter 3 of the [A-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 2).

Initial State (Positive Operand) Operand CF
|O1000100010001000100010001000111|

After 1-bit SAR Instruction

‘j)0100010001000100010001000100011}—>

Initial State (Negative Operand) CF
‘11000100010001000100010001000111}—>

After 1-bit SAR Instruction

d1100010001000100010001000100011}—>

Figure 7-9. SAR Instruction Operation

7-13

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

7.2.5.2. DOUBLE-SHIFT INSTRUCTIONS

The SHLD (shift left double) and SHRD (shift right double) instructions shift a specified
number of bits from one operand to another (see Figure 7-10). They are provided to facilitate
operations on unaligned bit strings. They can also be used to implement a variety of bit string
move operations.

SHLD Instruction
31 0

<—{ Destination (Memory or Register) lﬂ

31 0
Source (Register)

SHRD Instruction

‘ Source (Register) l—

L 31 0
‘ Destination (Memory or Register) *>

Figure 7-10. SHLD and SHRD Instruction Operations

The SHLD instruction shifts the bits in the destination operand to the left and fills the empty bit
positions (in the destination operand) with bits shifted out of the source operand. The destination
and source operands must be the same length (either words or doublewords). The shift count can
range from O to 31 bits. The result of this shift operation is stored in the destination operand, and
the source operand is not modified. The CF flag is loaded with the last bit shifted out of the desti-
nation operand.

The SHRD instruction operates the same as the SHLD instruction except bits are shifted to the
left in the destination operand, with the empty bit positions filled with bits shifted out of the
source operand.

7.2.5.3. ROTATE INSTRUCTIONS

The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate
through carry right) instructions rotate the bits in the destination operand out of one end and
back through the other end (see Figure 7-11). Unlike a shift, no bits are lost during a rotation.
The rotate count can range from O to 31.

7-14

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

ROL Instruction

.

31 0
CF |= Destination (Memory or Register) =<
31 ROR Instruction
%‘ Destination (Memory or Register)
31 RCL Instruction

el]

Destination (Memory or Register)

31

RCR Instruction

—

Destination (Memory or Register)

Figure 7-11. ROL, ROR, RCL, and RCR Instruction Operations

The ROL instruction rotates the bits in the operand to the left (toward more significant bit loca-
tions). The ROR instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag). This instruc-
tion treats the CF flag as a one-bit extension on the upper end of the operand. Each bit which
exits from the most significant bit location of the operand moves into the CF flag. At the same
time, the bit in the CF flag enters the least significant bit location of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag.

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of
the operand, even if the instruction does not use the CF flag as an extension of the operand. The
value of this flag can then be tested by a conditional jump instruction (JC or JNC).

7-15

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

7.2.6. Bit and Byte Instructions

The bit and byte instructions operate on bit or byte strings. They are divided into four groups:
® Bit test and modify instructions.

® Bit scan instructions.

® Byte set on condition.

® Test.

7.2.6.1. BIT TEST AND MODIFY INSTRUCTIONS

The bit test and modify instructions (see Table 7-3) operate on a single bit, which can be in an
operand. The location of the bit is specified as an offset from the least significant bit of the
operand. When the processor identifies the bit to be tested and modified, it first loads the CF flag
with the current value of the bit. Then it assigns a new value to the selected bit, as determined
by the modify operation for the instruction.

Table 7-3. Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit
BT (Bit Test) CF flag <« Selected Bit No effect
BTS (Bit Test and Set) CF flag <« Selected Bit Selected Bit « 1
BTR (Bit Test and Reset) CF flag <« Selected Bit Selected Bit < 0
BTC (Bit Test and Complement) | CF flag « Selected Bit Selected Bit < NOT (Selected Bit)

7.2.6.2. BIT SCAN INSTRUCTIONS

The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in a source
operand for a set bit and store the bit index of the first set bit found in a destination register. The
bit index is the offset from the least significant bit (bit 0) in the bit string to the first set bit. The
BSF instruction scans the source operand low-to-high (from bit O of the source operand toward
the most significant bit); the BSR instruction scans high-to-low (from the most significant bit
toward the least significant bit).

7.2.6.3. BYTE SET ON CONDITION INSTRUCTIONS

The SETcc (set byte on condition) instructions set a destination-operand byte to 0 or 1,
depending on the state of selected status flags (CF, OF, SF, ZF, and PF) in the EFLAGS register.
The suffix (cc) added to the SET mnemonic determines the condition being tested for.

7-16

tel® PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

For example, the SETO instruction tests for overflow. If the OF flag is set, the destination byte
is set to 1; if OF is clear, the destination byte is cleared to 0. Appendix B, EFLAGS Condition
Codes lists the conditions it is possible to test for with this instruction.

7.2.6.4. TEST INSTRUCTION

The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and PF flags
according to the results. The flags can then be tested by the conditional jump or loop instructions
or the SETcc instructions. The TEST instruction differs from the AND instruction in that it does
not alter either of the operands.

7.2.7. Control Transfer Instructions

The processor provides both conditional and unconditional control transfer instructions to direct
the flow of program execution. Conditional transfers are taken only for specified states of the
status flags in the EFLAGS register. Unconditional control transfers are always executed.

7.2.7.1. UNCONDITIONAL TRANSFER INSTRUCTIONS

The JMP, CALL, RET, INT, and IRET instructions transfer program control to another location
(destination address) in the instruction stream. The destination can be within the same code
segment (near transfer) or in a different code segment (far transfer).

Jump instruction. The JMP (jump) instruction unconditionally transfers program control to a
destination instruction. The transfer is one-way; that is, a return address is not saved. A destina-
tion operand specifies the address (the instruction pointer) of the destination instruction. The
address can be a relative address or an absolute address.

A relative address is a displacement (offset) with respect to the address in the EIP register. The
destination address (a near pointer) is formed by adding the displacement to the address in the
EIP register. The displacement is specified with a signed integer, allowing jumps either forward
or backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in either of the
following ways:

® An address in a general-purpose register. This address is treated as a near pointer, which
is copied into the EIP register. Program execution then continues at the new address within
the current code segment.

® An address specified using the standard addressing modes of the processor. Here, the
address can be a near pointer or a far pointer. If the address is for a near pointer, the address
is translated into an offset and copied into the EIP register. If the address is for a far pointer,
the address is translated into a segment selector (which is copied into the CS register) and
an offset (which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, and a task-
state segment.

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

Call and return instructions. The CALL (call procedure) and RET (return from procedure)
instructions allow a jump from one procedure (or subroutine) to another and a subsequent jump
back (return) to the calling procedure.

The CALL instruction transfers program control from the current (or calling procedure) to
another procedure (the called procedure). To allow a subsequent return to the calling procedure,
the CALL instruction saves the current contents of the EIP register on the stack before jumping
to the called procedure. The EIP register (prior to transferring program control) contains the
address of the instruction following the CALL instruction. When this address is pushed on the
stack, it is referred to as the return instruction pointer or return address.

The address of the called procedure (the address of the first instruction in the procedure being
jumped to) is specified in a CALL instruction the same way as it is in a JMP instruction (see
“Jump instruction” on page 7-17.) The address can be specified as a relative address or an abso-
lute address. If an absolute address is specified, it can be either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being executed (the
called procedure) back to the procedure that called it (the calling procedure). Transfer of control
is accomplished by copying the return instruction pointer from the stack into the EIP register.
Program execution then continues with the instruction pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the contents of the
ESP register as part of the return operation. This operand allows the stack pointer to be incre-
mented to remove parameters from the stack that were pushed on the stack by the calling
procedure.

See Section 6.3., “Calling Procedures Using CALL and RET”, for more information on the
mechanics of making procedure calls with the CALL and RET instructions.

Return from interrupt instruction. When the processor services an interrupt, it performs an
implicit call to an interrupt-handling procedure. The IRET (return from interrupt) instruction
returns program control from an interrupt handler to the interrupted procedure (that is, the proce-
dure that was executing when the interrupt occurred). The IRET instruction performs a similar
operation to the RET instruction (see “Call and return instructions” on page 7-18) except that it
also restores the EFLAGS register from the stack. The contents of the EFLAGS register are
automatically stored on the stack along with the return instruction pointer when the processor
services an interrupt.

7.2.7.2. CONDITIONAL TRANSFER INSTRUCTIONS

The conditional transfer instructions execute jumps or loops that transfer program control to
another instruction in the instruction stream if specified conditions are met. The conditions for
control transfer are specified with a set of condition codes that define various states of the status
flags (CF, ZF, OF, PF, and SF) in the EFLAGS register.

Conditional jump instructions. The Jcc (conditional) jump instructions transfer program
control to a destination instruction if the conditions specified with the condition code (cc) asso-
ciated with the instruction are satisfied (see Table 7-4). If the condition is not satisfied, execution
continues with the instruction following the Jcc instruction. As with the JMP instruction, the
transfer is one-way; that is, a return address is not saved.

7-18

intel.

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

Table 7-4. Conditional Jump Instructions

Instruction Mnemonic

Condition (Flag States)

Description

Unsigned Conditional Jumps
JA/JNBE
JAE/JNB
JB/JNAE
JBE/JNA
JC
JENZ
JNC
JNE/INZ
JNP/JPO
JP/JPE
JCXZ
JECXZ

(CF or ZF)=0
CF=0

CF=1
(CF or ZF)=1
CF=1

ZF=1

CF=0

ZF=0

PF=0

PF=1

CX=0
ECX=0

Above/not below or equal
Above or equal/not below
Below/not above or equal
Below or equal/not above
Carry

Equal/zero

Not carry

Not equal/not zero

Not parity/parity odd
Parity/parity even
Register CX is zero

Register ECX is zero

Signed Conditional Jumps
JG/JNLE

((SF xor OF) or ZF) =0

Greater/not less or equal

JGE/JNL (SF xor OF)=0 Greater or equal/not less
JL/UNGE (SF xor OF)=1 Less/not greater or equal
JLE/UNG ((SF xor OF) or ZF)=1 Less or equal/not greater
JNO OF=0 Not overflow

JNS SF=0 Not sign (non-negative)
JO OF=1 Overflow

Js SF=1 Sign (negative)

The destination operand specifies a relative address (a signed offset with respect to the address
in the EIP register) that points to an instruction in the current code segment. The Jcc instructions
do not support far transfers; however, far transfers can be accomplished with a combination of
aJcc and a JMP instruction (see “Jcc—Jump if Condition Is Met” in Chapter 3 of the IA-32 Intel
Architecture Software Developer’s Manual, Volume 2).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being tested for each
instruction. The condition code mnemonics are appended to the letter “J” to form the mnemonic
for a Jcc instruction.

The instructions are divided into two groups: unsigned and signed conditional jumps. These
groups correspond to the results of operations performed on unsigned and signed integers,
respectively. Those instructions listed as pairs (for example, JA/JINBE) are alternate names for
the same instruction. The assembler provides these alternate names to make it easier to read
program listings.

7-19

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead of one
or more status flags. See “Jump if zero instructions” on page 7-20 for more information about
these instructions.

Loop instructions. The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero),
LOOPNE (loop while not equal), and LOOPNZ (loop while not zero) instructions are condi-
tional jump instructions that use the value of the ECX register as a count for the number of times
to execute a loop. All the loop instructions decrement the count in the ECX register each time
they are executed and terminate a loop when zero is reached. The LOOPE, LOOPZ, LOOPNE,
and LOOPNZ instructions also accept the ZF flag as a condition for terminating the loop before
the count reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, if the
address-size attribute is 16), then tests the register for the loop-termination condition. If the
count in the ECX register is non-zero, program control is transferred to the instruction address
specified by the destination operand. The destination operand is a relative address (that is, an
offset relative to the contents of the EIP register), and it generally points to the first instruction
in the block of code that is to be executed in the loop. When the count in the ECX register
reaches zero, program control is transferred to the instruction immediately following the
LOOP instruction, which terminates the loop. If the count in the ECX register is zero when the
LOOP instruction is first executed, the register is pre-decremented to FFFFFFFFH, causing the
loop to be executed 22 times.

The LOOPE and LOOPZ instructions perform the same operation (they are mnemonics for the
same instruction). These instructions operate the same as the LOOP instruction, except that they
also test the ZF flag.

If the count in the ECX register is not zero and the ZF flag is set, program control is transferred
to the destination operand. When the count reaches zero or the ZF flag is clear, the loop is termi-
nated by transferring program control to the instruction immediately following the
LOOPE/LOOPZ instruction.

The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate the
same as the LOOPE/LOOPPZ instructions, except that they terminate the loop if the ZF flag is
set.

Jump if zero instructions. The JECXZ (jump if ECX zero) instruction jumps to the location
specified in the destination operand if the ECX register contains the value zero. This instruction
can be used in combination with a loop instruction (LOOP, LOOPE, LOOPZ, LOOPNE, or
LOOPNZ) to test the ECX register prior to beginning a loop. As described in “Loop instructions
on page 7-20, the loop instructions decrement the contents of the ECX register before testing for
zero. If the value in the ECX register is zero initially, it will be decremented to FFFFFFFFH on
the first loop instruction, causing the loop to be executed 232 times. To prevent this problem, a
JECXZ instruction can be inserted at the beginning of the code block for the loop, causing a
jump out the loop if the EAX register count is initially zero. When used with repeated string scan
and compare instructions, the JECXZ instruction can determine whether the loop terminated
because the count reached zero or because the scan or compare conditions were satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction when the
16-bit address-size attribute is used. Here, the CX register is tested for zero.

7-20

Intelo PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

7.2.7.3. SOFTWARE INTERRUPTS

The INT n (software interrupt), INTO (interrupt on overflow), and BOUND (detect value out of
range) instructions allow a program to explicitly raise a specified interrupt or exception, which
in turn causes the handler routine for the interrupt or exception to be called.

The INT #n instruction can raise any of the processor’s interrupts or exceptions by encoding the
vector number or the interrupt or exception in the instruction. This instruction can be used to
support software generated interrupts or to test the operation of interrupt and exception handlers

The IRET (return from interrupt) instruction returns program control from an interrupt handler
to the interrupted procedure. The IRET instruction performs a similar operation to the RET
instruction.

The CALL (call procedure) and RET (return from procedure) instructions allow a jump from
one procedure to another and a subsequent return to the calling procedure. EFLAGS register
contents are automatically stored on the stack along with the return instruction pointer when the
processor services an interrupt.

The INTO instruction raises the overflow exception, if the OF flag is set. If the flag is clear,
execution continues without raising the exception. This instruction allows software to access the
overflow exception handler explicitly to check for overflow conditions.

The BOUND instruction compares a signed value against upper and lower bounds, and raises
the “BOUND range exceeded” exception if the value is less than the lower bound or greater than
the upper bound. This instruction is useful for operations such as checking an array index to
make sure it falls within the range defined for the array.

7.2.8. String Operations

The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load string),
and STOS (Store string) instructions permit large data structures, such as alphanumeric char-
acter strings, to be moved and examined in memory. These instructions operate on individual
elements in a string, which can be a byte, word, or doubleword. The string elements to be oper-
ated on are identified with the ESI (source string element) and EDI (destination string element)
registers. Both of these registers contain absolute addresses (offsets into a segment) that point to
a string element.

By default, the ESI register addresses the segment identified with the DS segment register. A
segment-override prefix allows the ESI register to be associated with the CS, SS, ES, FS, or GS
segment register. The EDI register addresses the segment identified with the ES segment
register; no segment override is allowed for the EDI register. The use of two different segment
registers in the string instructions permits operations to be performed on strings located in
different segments. Or by associating the ESI register with the ES segment register, both the
source and destination strings can be located in the same segment. (This latter condition can also
be achieved by loading the DS and ES segment registers with the same segment selector and
allowing the ESI register to default to the DS register.)

7-21

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

The MOVS instruction moves the string element addressed by the ESI register to the location
addressed by the EDI register. The assembler recognizes three “short forms” of this instruction,
which specify the size of the string to be moved: MOVSB (move byte string), MOVSW (move
word string), and MOV SD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string element
and updates the status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS register according to
the results. Neither string element is written back to memory. The assembler recognizes three
“short forms” of the CMPS instruction: CMPSB (compare byte strings), CMPSW (compare
word strings), and CMPSD (compare doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of the EAX,
AX, or AL register (depending on operand length) and updates the status flags according to the
results. The string element and register contents are not modified. The following “short forms”
of the SCAS instruction specifies the operand length: SCASB (scan byte string), SCASW (scan
word string), and SCASD (scan doubleword string).

The LODS instruction loads the source string element identified by the ESI register into the
EAX register (for a doubleword string), the AX register (for a word string), or the AL register
(for a byte string). The “short forms” for this instruction are LODSB (load byte string), LODSW
(load word string), and LODSD (load doubleword string). This instruction is usually used in a
loop, where other instructions process each element of the string after they are loaded into the
target register.

The STOS instruction stores the source string element from the EAX (doubleword string), AX
(word string), or AL (byte string) register into the memory location identified with the EDI
register. The “short forms” for this instruction are STOSB (store byte string), STOSW (store
word string), and STOSD (store doubleword string). This instruction is also normally used in a
loop. Here a string is commonly loaded into the register with a LODS instruction, operated
on by other instructions, and then stored again in memory with a STOS instruction.

The I/0O instructions (see Section 7.2.9., “I/O Instructions”) also perform operations on strings
in memory.

7.2.8.1. REPEATING STRING OPERATIONS

The string instructions described in Section 7.2.8., “String Operations” perform one iteration of
a string operation. To operate strings longer than a doubleword, the string instructions can be
combined with a repeat prefix (REP) to create a repeating instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incremented or
decremented after each iteration of an instruction to point to the next element (byte, word, or
doubleword) in the string. String operations can thus begin at higher addresses and work toward
lower ones, or they can begin at lower addresses and work toward higher ones. The DF flag in
the EFLAGS register controls whether the registers are incremented (DF=0) or decremented
(DF=1). The STD and CLD instructions set and clear this flag, respectively.

7-22

Intelo PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

The following repeat prefixes can be used in conjunction with a count in the ECX register to
cause a string instruction to repeat:

® REP—Repeat while the ECX register not zero.
® REPE/REPZ—Repeat while the ECX register not zero and the ZF flag is set.
® REPNE/REPNZ—Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the termination
conditions specified by the prefix is satisfied. The REPE/REPZ and REPNE/REPNZ prefixes
are used only with the CMPS and SCAS instructions. Also, note that a A REP STOS instruction
is the fastest way to initialize a large block of memory.

7.2.9. 1/0O Instructions

The IN (input from port to register), INS (input from port to string), OUT (output from register
to port), and OUTS (output string to port) instructions move data between the processor’s I/O
ports and either a register or memory.

The register I/O instructions (IN and OUT) move data between an I/O port and the EAX register
(32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The I/O port being read
or written to is specified with an immediate operand or an address in the DX register.

The block I/0 instructions (INS and OUTS) instructions move blocks of data (strings) between
an I/O port and memory. These instructions operate similar to the string instructions (see Section
7.2.8., “String Operations”). The ESI and EDI registers are used to specify string elements in
memory and the repeat prefixes (REP) are used to repeat the instructions to implement block
moves. The assembler recognizes the following alternate mnemonics for these instructions:
INSB (input byte), INSW (input word), and INSD (input doubleword), and OUTB (output byte),
OUTW (output word), and OUTD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O port to be
read or written to.

7.2.10. Enter and Leave Instructions

The ENTER and LEAVE instructions provide machine-language support for procedure calls in
block-structured languages, such as C and Pascal. These instructions and the call and return
mechanism that they support are described in detail in Section 6.5., “Procedure Calls for Block-
Structured Languages”.

7.2.11. EFLAGS Instructions

The EFLAGS instructions allow the state of selected flags in the EFLAGS register to be read or
modified.

7-23

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

7.2.11.1. CARRY AND DIRECTION FLAG INSTRUCTIONS

The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) instructions
allow the CF flags in the EFLAGS register to be modified directly. They are typically used to
initialize the CF flag to a known state before an instruction that uses the flag in an operation is
executed. They are also used in conjunction with the rotate-with-carry instructions (RCL and
RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF flag in the
EFLAGS register to be modified directly. The DF flag determines the direction in which index
registers EST and EDI are stepped when executing string processing instructions. If the DF flag
is clear, the index registers are incremented after each iteration of a string instruction; if the DF
flag is set, the registers are decremented.

7.2.11.2. INTERRUPT FLAG INSTRUCTIONS

The STI (set interrupt flag) and CTI (clear interrupt flag) instructions allow the interrupt IF flag
in the EFLAGS register to be modified directly. The IF flag controls the servicing of hardware-
generated interrupts (those received at the processor’s INTR pin). If the IF flag is set, the
processor services hardware interrupts; if the IF flag is clear, hardware interrupts are masked.

7.2.11.3. EFLAGS TRANSFER INSTRUCTIONS

The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to be copied
to a register or memory or be loaded from a register or memory.

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on five of
the EFLAGS status flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies the status flags
to bits 7, 6, 4, 2, and 0 of the AH register, respectively. The contents of the remaining bits in the
register (bits 5, 3, and 1) are undefined, and the contents of the EFLAGS register remain
unchanged. The SAHF instruction copies bits 7, 6, 4, 2, and 0 from the AH register into the SF,
ZF, AF, PF, and CF flags, respectively in the EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD (pop flags
double) instructions copy the flags in the EFLAGS register to and from the stack. The PUSHF
instruction pushes the lower word of the EFLAGS register onto the stack (see Figure 7-12). The
PUSHFD instruction pushes the entire EFLAGS register onto the stack (with the RF and VM flags
read as clear).

7-24

Intelo PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

PUSHFD/POPFD

A
Y

PUSHF/POPF

31302928272625242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

MM
ololo[o|o|olo]o|o]o|S]1]1|A

Rlo|N
P|F F

v olo|t|Tls|z|,|al,|P|4|C
m[F|0|T FIF|F[F|F|F|O|F|°|F|T|F

—roUO—

Figure 7-12. Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD Instructions

The POPF instruction pops a word from the stack into the EFLAGS register. Only bits 11, 10,
8,7,6,4,2, and 0 of the EFLAGS register are affected with all uses of this instruction. If the
current privilege level (CPL) of the current code segment is 0 (most privileged), the IOPL bits
(bits 13 and 12) also are affected. If the I/O privilege level (IOPL) is greater than or equal to the
CPL, numerically, the IF flag (bit 9) also is affected.

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction can
change the state of the AC bit (bit 18) and the ID bit (bit 21), as well as the bits affected by a
POPF instruction. The restrictions for changing the IOPL bits and the IF flag that were given for
the POPF instruction also apply to the POPFD instruction.

7.2.11.4. INTERRUPT FLAG INSTRUCTIONS

The CLI (clear interrupt flag) and STI (set interrupt flag) instructions clear and set the interrupt
flag (IF) in the EFLAGS register, respectively. Clearing the IF flag causes external interrupts to
be ignored. The ability to execute these instructions depends on the operating mode of the
processor and the current privilege level (CPL) of the program or task attempting to execute
these instructions.

7.2.12. Segment Register Instructions

The processor provides a variety of instructions that address the segment registers of the
processor directly. These instructions are only used when an operating system or executive is
using the segmented or the real-address mode memory model.

7.2.12.1. SEGMENT-REGISTER LOAD AND STORE INSTRUCTIONS

The MOV instruction (introduced in Section 7.2.1.1., “General Data Movement Instructions”)
and the PUSH and POP instructions (introduced in Section 7.2.1.3., “Stack Manipulation
Instructions™) can transfer 16-bit segment selectors to and from segment registers (DS, ES, FS,
GS, and SS). The transfers are always made to or from a segment register and a general-purpose
register or memory. Transfers between segment registers are not supported.

7-25

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS Intel®

The POP and MOV instructions cannot place a value in the CS register. Only the far control-
transfer versions of the JMP, CALL, and RET instructions (see Section 7.2.12.2., “Far Control
Transfer Instructions”) affect the CS register directly.

7.2.12.2. FAR CONTROL TRANSFER INSTRUCTIONS

The JMP and CALL instructions (see Section 7.2.7., “Control Transfer Instructions”) both
accept a far pointer as a source operand to transfer program control to a segment other than the
segment currently being pointed to by the CS register. When a far call is made with the CALL
instruction, the current values of the EIP and CS registers are both pushed on the stack.

The RET instruction (see “Call and return instructions” on page 7-18) can be used to execute a
far return. Here, program control is transferred from a code segment that contains a called proce-
dure back to the code segment that contained the calling procedure. The RET instruction restores
the values of the CS and EIP registers for the calling procedure from the stack.

7.2.12.3. SOFTWARE INTERRUPT INSTRUCTIONS

The software interrupt instructions INT, INTO, BOUND, and IRET (see Section 7.2.7.3., “Soft-
ware Interrupts”) can also call and return from interrupt and exception handler procedures that
are located in a code segment other than the current code segment. With these instructions,
however, the switching of code segments is handled transparently from the application program.

7.2.12.4. LOAD FAR POINTER INSTRUCTIONS

The load far pointer instructions LDS (load far pointer using DS), LES (load far pointer using
ES), LFS (load far pointer using FS), LGS (load far pointer using GS), and LSS (load far pointer
using SS) load a far pointer from memory into a segment register and a general-purpose general
register. The segment selector part of the far pointer is loaded into the selected segment register
and the offset is loaded into the selected general-purpose register.

7.2.13. Miscellaneous Instructions

The following instructions perform miscellaneous operations that are of interest to applications
programmers.

7.2.13.1. ADDRESS COMPUTATION INSTRUCTION

The LEA (load effective address) instruction computes the effective address in memory (offset
within a segment) of a source operand and places it in a general-purpose register. This instruction
can interpret any of the processor’s addressing modes and can perform any indexing or scaling
that may be needed. It is especially useful for initializing the ESI or EDI registers before the
execution of string instructions or for initializing the EBX register before an XLAT instruction.

7-26

Intelc PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

7.2.13.2. TABLE LOOKUP INSTRUCTIONS

The XLAT and XLATB (table lookup) instructions replace the contents of the AL register with
a byte read from a translation table in memory. The initial value in the AL register is interpreted
as an unsigned index into the translation table. This index is added to the contents of the EBX
register (which contains the base address of the table) to calculate the address of the table entry.
These instructions are used for applications such as converting character codes from one
alphabet into another (for example, an ASCII code could be used to look up its EBCDIC equiv-
alent in a table).

7.2.13.3. PROCESSOR IDENTIFICATION INSTRUCTION

The CPUID (processor identification) instruction returns information about the processor on
which the instruction is executed.

7.2.13.4. NO-OPERATION AND UNDEFINED INSTRUCTIONS

The NOP (no operation) instruction increments the EIP register to point at the next instruction,
but affects nothing else.

The UD2 (undefined) instruction generates an invalid opcode exception. Intel reserves the
opcode for this instruction for this function. The instruction is provided to allow software to test
an invalid opcode exception handler.

7-27

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

7-28

3

Programming With
the x87 Floating-
Point Unit

CHAPTER 8
PROGRAMMING WITH THE X87 FPU

The x87 Floating-Point Unit (FPU) provides high-performance floating-point processing capa-
bilities for use in graphics processing, scientific, engineering, and business applications. It
supports the floating-point, integer, and packed BCD integer data types and the floating-point
processing algorithms and exception handling architecture defined in the IEEE Standard 754 for
Binary Floating-Point Arithmetic.

This chapter describes the x87 FPU’s execution environment and instruction set. It also provides
exception handling information that is specific to the x87 FPU. Refer to the following chapters
or sections of chapters for additional information about x87 FPU instructions and floating-point
operations:

® Chapter 3, Instruction Set Reference, in the IA-32 Intel Architecture Software Developer'’s
Manual, Volume 2 provides detailed descriptions of the x87 FPU instructions.

® Section 4.2.2., “Floating-Point Data Types”, Section 4.2.1.2., “Signed Integers”, and
Section 4.7., “BCD and Packed BCD Integers” describes the floating-point, integer, and
BCD data types that the x87 FPU operates on.

® Section 4.9., “Overview of Floating-Point Exceptions”, Section 4.9.1., “Floating-Point
Exception Conditions”, and Section 4.9.2., “Floating-Point Exception Priority” give an
overview of the floating-point exceptions that the x87 FPU can detect and report.

8.1. X87 FPU EXECUTION ENVIRONMENT

The x87 FPU represents a separate execution environment within the IA-32 architecture (see
Figure 8-1). This execution environment consists of § data registers (called the x87 FPU data
registers) and the following special-purpose registers:

® The status register.

® The control register.

® The tag word register.

® Last instruction pointer register.

® Last data (operand) pointer register.

® Opcode register.

These registers are described in the following sections.

The x87 FPU executes instructions from the processor’s normal instruction stream. The state of
the x87 FPU is independent from the state of the basic execution environment (described in
Chapter 7) and from the state of the SSE extensions and SSE2 extensions (described in Chapters
10 and 11, respectively).

PROGRAMMING WITH THE X87 FPU Intel®

However, the x87 FPU and Intel MMX technology share state because the MMX registers are
aliased to the x87 FPU data registers. Therefore, when writing code that mixed x87 FPU and
MMX instructions, the programmer must explicitly manage the x87 FPU and MMX state (see
Section 9.5., “Compatibility with x87 FPU Architecture”).

8.1.1. x87 FPU Data Registers

The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers. Values are
stored in these registers in the double extended-precision floating-point format shown in Figure
4-3. When floating-point, integer, or packed BCD integer values are loaded from memory into
any of the x87 FPU data registers, the values are automatically converted into double extended-
precision floating-point format (if they are not already in that format). When computation results
are subsequently transferred back into memory from any of the x87 FPU registers, the results
can be left in the double extended-precision floating-point format or converted back into a
shorter floating-point format, an integer format, or the packed BCD integer format. (See Section
8.2., “x87 FPU Data Types” for a description of the data types operated on by the x87 FPU.)

Data Registers

Sign \19 78 64 63 0
R7 | | Exponent Significand
R6
R5
R4
R3
R2
R1
RO
15 0 47 0
gg&ggr Last Instruction Pointer
RSeta_tuts Last Data (Operand) Pointer
gister
Tag 10 0
Register Opcode

Figure 8-1. x87 FPU Execution Environment

The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see Figure
8-2). All addressing of the data registers is relative to the register on the top of the stack. The
register number of the current top-of-stack register is stored in the TOP (stack TOP) field in the
x87 FPU status word. Load operations decrement TOP by one and load a value into the new top-
of-stack register, and store operations store the value from the current TOP register in memory

8-2

Intelo PROGRAMMING WITH THE X87 FPU

and then increment TOP by one. (For the x87 FPU, a load operation is equivalent to a push and
a store operation is equivalent to a pop.) Note that load and store operations are also available
that do not push and pop the stack.

FPU Data Register Stack
7
6
Sk 5 sT@)
4 ST(1) Top
1 3 ST(0)
2
1
0

Figure 8-2. x87 FPU Data Register Stack

If aload operation is performed when TOP is at 0, register wraparound occurs and the new value
of TOP is set to 7. The floating-point stack-overflow exception indicates when wraparound
might cause an unsaved value to be overwritten (see Section 8.5.1.1., “Stack Overflow or Under-
flow Exception (#1S)”).

Many floating-point instructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative to
the TOP. Assemblers supports these register addressing modes, using the expression ST(0), or
simply ST, to represent the current stack top and ST(i) to specify the ith register from TOP in
the stack (0 <i < 7). For example, if TOP contains 011B (register 3 is the top of the stack), the
following instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);
Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and instruc-

tions are typically used to perform a series of computations. Here, a two-dimensional dot
product is computed, as follows:

1. The first instruction (FLD valuel) decrements the stack register pointer (TOP) and loads
the value 5.6 from memory into ST(0). The result of this operation is shown in snap-shot

(a).

2. The second instruction multiplies the value in ST(0) by the value 2.4 from memory and
stores the result in ST(0), shown in snap-shot (b).

The third instruction decrements TOP and loads the value 3.8 in ST(0).

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from memory and
stores the result in ST(0), shown in snap-shot (c).

PROGRAMMING WITH THE X87 FPU Intel®

5. The fifth instruction adds the value and the value in ST(1) and stores the result in ST(0),
shown in snap-shot (d).

Computation
Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:

FLD wvaluel ; (a) valuel=5.6
FMUL value2 ; (b) value2=2.4
FLD value3 ; value3=3.8
FMUL value4 ; (c)value4=10.3

FADD ST (1) ;(d)
(@) (b) (©) (d)
R7 R7 R7 R7
R6 R6 R6 R6
R5 R5 R5 R5
R4 5.6 ST(0) R4 13.44 ST(0) R4 13.44 ST(1) R4 13.44 ST
R3 R3 R3| 39.14 |[ST(0) R3| 5258 |ST
R2 R2 R2 R2
Ri Ri Ri Ri
RO RO RO RO

Figure 8-3. Example x87 FPU Dot Product Computation

The style of programming demonstrated in this example is supported by the floating-point
instruction set. In cases where the stack structure causes computation bottlenecks, the FXCH
(exchange x87 FPU register contents) instruction can be used to streamline a computation.

8.1.1.1. PARAMETER PASSING WITH THE X87 FPU REGISTER STACK

Like the general-purpose registers, the contents of the x87 FPU data registers are unaffected by
procedure calls, or in other words, the values are maintained across procedure boundaries. A
calling procedure can thus use the x87 FPU data registers (as well as the procedure stack) for
passing parameter between procedures. The called procedure can reference parameters passed
through the register stack using the current stack register pointer (TOP) and the ST(0) and ST(i)
nomenclature. It is also common practice for a called procedure to leave a return value or result
in register ST(0) when returning execution to the calling procedure or program.

When mixing MMX and x87 FPU instructions in the procedures or code sequences, the
programmer is responsible for maintaining the integrity of parameters being passed in the x87
FPU data registers. If an MMX instruction is executed before the parameters in the x87 FPU data
registers have been passed to another procedure, the parameters may be lost (see Section 9.5.,
“Compatibility with x87 FPU Architecture”).

8-4

Intelo PROGRAMMING WITH THE X87 FPU

8.1.2. x87 FPU Status Register

The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the x87 FPU.
The flags in the x87 FPU status register include the FPU busy flag, top-of-stack (TOP) pointer,
condition code flags, error summary status flag, stack fault flag, and exception flags. The x87
FPU sets the flags in this register to show the results of operations.

FPU Busy
’7 Top of Stack Pointer
151413 11109 8 7 6 5 4 3 2 1 0

Condition ’ ’ ‘

Code
Error Summary Status
Stack Fault
Exception Flags

Precision

Underflow

Overflow

Zero Divide

Denormalized Operand

Invalid Operation

Figure 8-4. x87 FPU Status Word

The contents of the x87 FPU status register (referred to as the x87 FPU status word) can be
stored in memory using the FSTSW/ENSTSW, FSTENV/FNSTENYV, FSAVE/FNSAVE, and
FXSAVE instructions. It can also be stored in the AX register of the integer unit, using the
FSTSW/FNSTSW instructions.

8.1.2.1. TOP OF STACK (TOP) POINTER

A pointer to the x87 FPU data register that is currently at the top of the x87 FPU register stack
is contained in bits 11 through 13 of the x87 FPU status word. This pointer, which is commonly
referred to as TOP (for top-of-stack), is a binary value from 0 to 7. See Section 8.1.1., “x87
FPU Data Registers”, for more information about the TOP pointer.

8.1.2.2. CONDITION CODE FLAGS

The four condition code flags (CO through C3) indicate the results of floating-point comparison
and arithmetic operations. Table 8-1 summarizes the manner in which the floating-point instruc-
tions set the condition code flags. These condition code bits are used principally for conditional
branching and for storage of information used in exception handling (see Section 8.1.3.,
“Branching and Conditional Moves on Condition Codes”).

PROGRAMMING WITH THE X87 FPU Intel®

As shown in Table 8-1, the C1 condition code flag is used for a variety of functions. When both
the IE and SF flags in the x87 FPU status word are set, indicating a stack overflow or underflow
exception (#IS), the C1 flag distinguishes between overflow (Cl=1) and underflow (C1=0).
When the PE flag in the status word is set, indicating an inexact (rounded) result, the C1 flag is
set to 1 if the last rounding by the instruction was upward. The FXAM instruction sets C1 to the
sign of the value being examined.

The C2 condition code flag is used by the FPREM and FPREMI instructions to indicate an
incomplete reduction (or partial remainder). When a successful reduction has been completed,
the CO, C3, and C1 condition code flags are set to the three least-significant bits of the quotient
(Q2, QI, and QO, respectively). See “FPREM 1—Partial Remainder” in Chapter 3, Instruction
Set Reference, of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2, for more
information on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate that the
source operand is beyond the allowable range of 2% and clear the C2 flag if the source operand
is within the allowable range.

Where the state of the condition code flags are listed as undefined in Table 8-1, do not rely on
any specific value in these flags.

8.1.2.3. X87 FPU FLOATING-POINT EXCEPTION FLAGS

The six x87 FPU floating-point exception flags (bits O through 5) of the x87 FPU status word
indicate that one or more floating-point exceptions has been detected since the bits were last
cleared. The individual exception flags (IE, DE, ZE, OE, UE, and PE) are described in detail in
Section 8.4., “x87 FPU Floating-Point Exception Handling”. Each of the exception flags can be
masked by an exception mask bit in the x87 FPU control word (see Section 8.1.4., “x87 FPU
Control Word”). The exception summary status (ES) flag (bit 7) is set when any of the unmasked
exception flags are set. When the ES flag is set, the x87 FPU exception handler is invoked, using
one of the techniques described in Section 8.7., “Handling x87 FPU Exceptions in Software”.
(Note that if an exception flag is masked, the x87 FPU will still set the flag if its associated
exception occurs, but it will not set the ES flag.)

The exception flags are “sticky” bits, meaning that once set, they remain set until explicitly
cleared. They can be cleared by executing the FCLEX/FNCLEX (clear exceptions) instructions,
by reinitializing the x87 FPU with the FINIT/FNINIT or FSAVE/FNSAVE instructions, or by
overwriting the flags with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES flag.

8-6

intel.

PROGRAMMING WITH THE X87 FPU

Table 8-1. Condition Code Interpretation

FDECSTP, FILD, FINCSTP,
FLD, Load Constants, FSTP
(ext. prec.), FXCH, FXTRACT

Instruction co C3 C2 C1
FCOM, FCOMP, FCOMPP, Result of Comparison Operands 0 or #1S
FICOM, FICOMP, FTST, are not
FUCOM, FUCOMP, Comparable
FUCOMPP
FCOMI, FCOMIP, FUCOMI, Undefined. (These instructions set the #IS
FUCOMIP status flags in the EFLAGS register.)
FXAM Operand class Sign
FPREM, FPREM1 Q2 Q1 O=reduction QO or #IS
complete
1=reduction
incomplete
F2XM1, FADD, FADDP, Undefined Roundup or #IS
FBSTP, FCMOVcc, FIADD,
FDIV, FDIVP, FDIVR,
FDIVRP, FIDIV, FIDIVR,
FIMUL, FIST, FISTP, FISUB,
FISUBR,FMUL, FMULP,
FPATAN, FRNDINT,
FSCALE, FST, FSTP, FSUB,
FSUBP, FSUBR,
FSUBRP,FSQRT, FYL2X,
FYL2XP1
FCOS, FSIN, FSINCOS, Undefined O=source Roundup or #IS
FPTAN operand within | (Undefined if
range C2=1)
1=source
operand out of
range.
FABS, FBLD, FCHS, Undefined 0 or #IS

FLDENYV, FRSTOR

Each bit loaded from memory

FFREE, FLDCW,
FCLEX/FNCLEX, FNOP,
FSTCW/FNSTCW,
FSTENV/FNSTENYV,
FSTSW/FNSTSW,

Undefined

FINIT/ENINIT,
FSAVE/FNSAVE

8.1.2.4.

STACK FAULT FLAG

The stack fault flag (bit 6 of the x87 FPU status word) indicates that stack overflow or stack
underflow has occurred with data in the x87 FPU data register stack. The x87 FPU explicitly
sets the SF flag when it detects a stack overflow or underflow condition, but it does not explicitly
clear the flag when it detects an invalid-arithmetic-operand condition.

8-7

PROGRAMMING WITH THE X87 FPU Intel®

When this flag is set, the condition code flag C1 indicates the nature of the fault: overflow
(C1 = 1) and underflow (C1 = 0). The SF flag is a “sticky” flag, meaning that after it is set,
the processor does not clear it until it is explicitly instructed to do so (for example, by an
FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction).

See Section 8.1.6., “x87 FPU Tag Word” for more information on x87 FPU stack faults.

8.1.3. Branching and Conditional Moves on Condition Codes

The x87 FPU (beginning with the P6 family processors) supports two mechanisms for branching
and performing conditional moves according to comparisons of two floating-point values. These
mechanism are referred to here as the “old mechanism” and the “new mechanism.”

The old mechanism is available in x87 FPU’s prior to the P6 family processors and in the P6
family processors. This mechanism uses the floating-point compare instructions (FCOM,
FCOMP, FCOMPP, FTST, FUCOMPP, FICOM, and FICOMP) to compare two floating-point
values and set the condition code flags (CO through C3) according to the results. The contents
of the condition code flags are then copied into the status flags of the EFLAGS register using a
two step process (see Figure 8-5):

1. The FSTSW AX instruction moves the x87 FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the
condition code flags, into the lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional jumps
or conditional moves can be performed based on the new settings of the status flags in the
EFLAGS register.

15 x87 FPU Status Word 0
Condition Status
c c|clc
Code Flag 3 51110
co CF l
C1 (none)
Cc2 PE FSTSW AX Instruction
C3 ZF 15 AX Register 0
c c|c|c
3 2(1]0
SAHF Instruction
1
31 EFLAGS Register 7 0
z Pl,|C
F FI'IF

Figure 8-5. Moving the Condition Codes to the EFLAGS Register

8-8

Intelo PROGRAMMING WITH THE X87 FPU

The new mechanism is available beginning with the P6 family processors. Using this mecha-
nism, the new floating-point compare and set EFLAGS instructions (FCOMI, FCOMIP,
FUCOMI, and FUCOMIP) compare two floating-point values and set the ZF, PF, and CF flags
in the EFLAGS register directly. A single instruction thus replaces the three instructions
required by the old mechanism.

Note also that the FCMOVcc instructions (also new in the P6 family processors) allow condi-
tional moves of floating-point values (values in the x87 FPU data registers) based on the setting
of the status flags (ZF, PF, and CF) in the EFLAGS register. These instructions eliminate the
need for an IF statement to perform conditional moves of floating-point values.

8.1.4. x87 FPU Control Word

The 16-bit x87 FPU control word (see Figure 8-6) controls the precision of the x87 FPU and
rounding method used. It also contains the x87 FPU floating-point exception mask bits. The
control word is cached in the x87 FPU control register. The contents of this register can be
loaded with the FLDCW instruction and stored in memory with the FSTCW/FNSTCW instruc-
tions.

Infinity Control

Rounding Control
’7 Precision Control

1514131211109 8 7 6 5 4 3 2 1 0

plulo|z|p|1
X| RC | PC M[M|M[M|M[m

Exception Masks
Precision
Underflow
Overflow
Zero Divide
Denormal Operand
Invalid Operation

D Reserved

Figure 8-6. x87 FPU Control Word

When the x87 FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction,
the x87 FPU control word is set to 037FH, which masks all floating-point exceptions, sets
rounding to nearest, and sets the x87 FPU precision to 64 bits.

PROGRAMMING WITH THE X87 FPU Intel®

8.1.4.1. X87 FPU FLOATING-POINT EXCEPTION MASK BITS

The exception-flag mask bits (bits 0 through 5 of the x87 FPU control word) mask the 6 floating-
point exception flags in the x87 FPU status word. When one of these mask bits is set, its corre-
sponding x87 FPU floating-point exception is blocked from being generated.

8.1.4.2. PRECISION CONTROL FIELD

The precision-control (PC) field (bits 8 and 9 of the x87 FPU control word) determines the preci-
sion (64, 53, or 24 bits) of floating-point calculations made by the x87 FPU (see Table 8-2). The
default precision is double extended precision, which uses the full 64-bit significand available
with the double extended-precision floating-point format of the x87 FPU data registers. This
setting is best suited for most applications, because it allows applications to take full advantage
of the maximum precision available with the x87 FPU data registers.

Table 8-2. Precision Control Field (PC)

Precision PC Field
Single Precision (24-Bits) 00B
Reserved 01B
Double Precision (53-Bits) 10B
Double Extended Precision (64-Bits) 11B

The double precision and single precision settings reduce the size of the significand to 53 bits
and 24 bits, respectively. These settings are provided to support IEEE Standard 754 and to
provide compatibility with the specifications of certain existing programming languages. Using
these settings nullifies the advantages of the double extended-precision floating-point format’s
64-bit significand length. When reduced precision is specified, the rounding of the significand
value clears the unused bits on the right to zeros.

The precision-control bits only affect the results of the following floating-point instructions:
FADD, FADDP, FIADD, FSUB, FSUBP, FISUB, FSUBR, FSUBRP, FISUBR, FMUL,
FMULP, FIMUL, FDIV, FDIVP, FIDIV, FDIVR, FDIVRP, FIDIVR, and FSQRT.

8.1.4.3. ROUNDING CONTROL FIELD

The rounding-control (RC) field of the x87 FPU control register (bits 10 and 11) controls how
the results of x87 FPU floating-point instructions are rounded. See Section 4.8.4., “Rounding”
for a discussion of rounding of floating-point values; See Section 4.8.4.1., “Rounding Control
(RC) Fields” for the encodings of the RC field.

8-10

Intelo PROGRAMMING WITH THE X87 FPU

8.1.5. Infinity Control Flag

The infinity control flag (bit 12 of the x87 FPU control word) is provided for compatibility with
the Intel 287 Math Coprocessor; it is not meaningful for later version x87 FPU coprocessors or
IA-32 processors. See Section 4.8.3.3., “Signed Infinities”, for information on how the x87
FPUs handle infinity values.

8.1.6. x87 FPU Tag Word

The 16-bit tag word (see Figure 8-7) indicates the contents of each the 8 registers in the x87 FPU
data-register stack (one 2-bit tag per register). The tag codes indicate whether a register contains
a valid number, zero, or a special floating-point number (NaN, infinity, denormal, or unsup-
ported format), or whether it is empty. The x87 FPU tag word is cached in the x87 FPU in the
x87 FPU tag word register. When the x87 FPU is initialized with either an FINIT/FNINIT or
FSAVE/FNSAVE instruction, the x87 FPU tag word is set to FFFFH, which marks all the x87
FPU data registers as empty.

15 0
TAG(7) | TAG(6) | TAG(5) | TAG(4) | TAG(3) | TAG(2) | TAG(1) | TAG(0)

TAG Values
00 — Valid
01 — Zero
10 — Special: invalid (NaN, unsupported), infinity, or denormal
11 — Empty

Figure 8-7. x87 FPU Tag Word

Each tag in the x87 FPU tag word corresponds to a physical register (numbers 0 through 7). The
current top-of-stack (TOP) pointer stored in the x87 FPU status word can be used to associate
tags with registers relative to ST(0).

The x87 FPU uses the tag values to detect stack overflow and underflow conditions (see Section
8.5.1.1., “Stack Overflow or Underflow Exception (#IS)”).

Application programs and exception handlers can use this tag information to check the contents
of an x87 FPU data register without performing complex decoding of the actual data in the
register. To read the tag register, it must be stored in memory using either the
FSTENV/ENSTENYV or FSAVE/FNSAVE instructions. The location of the tag word in memory
after being saved with one of these instructions is shown in Figures 8-9 through 8-12.

Software cannot directly load or modify the tags in the tag register. The FLDENV and
FRSTOR instructions load an image of the tag register into the x87 FPU; however, the x87 FPU
uses those tag values only to determine if the data registers are empty (11B) or non-empty
(00B, 01B, or 10B).

PROGRAMMING WITH THE X87 FPU Intel®

If the tag register image indicates that a data register is empty, the tag in the tag register for that
data register is marked empty (11B); if the tag register image indicates that the data register is
non-empty, the x87 FPU reads the actual value in the data register and sets the tag for the register
accordingly. This action prevents a program from setting the values in the tag register to incor-
rectly represent the actual contents of non-empty data registers.

8.1.7. x87 FPU Instruction and Data (Operand) Pointers

The x87 FPU stores pointers to the instruction and data (operand) for the last non-control
instruction executed. These pointers are stored in two 48-bit registers: the x87 FPU instruction
pointer and x87 FPU operand (data) pointer registers (see Figure 8-1). (These pointers are saved
to provide state information for exception handlers.)

Note that the value in the x87 FPU data pointer register is always a pointer to a memory operand,
If the last non-control instruction that was executed did not have a memory operand, the value
in the data pointer register is undefined (reserved).

The contents of the x87 FPU instruction and data pointer registers remain unchanged when any
of the control instructions (FINIT/FNINIT, FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW,
FSTSW/FNSTSW, FSTENV/ENSTENV, FLDENYV, FSAVE/FNSAVE, FRSTOR, and
WAIT/FWAIT) are executed.

The pointers stored in the x87 FPU instruction and data pointer registers consist of an offset
(stored in bits O through 31) and a segment selector (stored in bits 32 through 47).

These registers can be accessed by the FSTENV/FNSTENYV, FLDENYV, FINIT/FNINIT,
FSAVE/FNSAVE, FRSTOR, FXSAVE, and FXRSTOR instructions. The FINIT/ENINIT and
FSAVE/FNSAVE instructions clear these registers.

For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points to any
prefixes that preceded the instruction. For the 8087, the x87 FPU instruction pointer points only
to the actual opcode.

8.1.8. Last Instruction Opcode

The x87 FPU stores the opcode of the last non-control instruction executed in an 11-bit x87 FPU
opcode register. (This information provides state information for exception handlers.) Only the
first and second opcode bytes (after all prefixes) are stored in the x87 FPU opcode register.
Figure 8-8 shows the encoding of these two bytes. Since the upper 5 bits of the first opcode byte
are the same for all floating-point opcodes (11011B), only the lower 3 bits of this byte are stored
in the opcode register.

8.1.8.1. FOPCODE COMPATIBILITY MODE

Beginning with the Pentium 4 and Intel Xeon processors, the IA-32 architecture provides
program control over the storing of the last instruction opcode (sometimes referred to as the

8-12

Intelo PROGRAMMING WITH THE X87 FPU

fopcode). Here, bit 2 of the IA32_MISC_ENABLE MSR enables (set) or disables (clear) the
fopcode compatibility mode.

If FOP code compatibility mode is enabled, the FOP is defined as it has always been in previous
IA32 implementations (always defined as the FOP of the last non-transparent FP instruction
executed before a FSAVE/FSTENV/FXSAVE). If FOP code compatibility mode is disabled
(default), FOP is only valid if the last non-transparent FP instruction executed before a
FSAVE/FSTENV/FXSAVE had an unmasked exception.

1st Instruction Byte 2nd Instruction Byte

x87 FPU Opcode Register

Figure 8-8. Contents of x87 FPU Opcode Registers

The fopcode compatibility mode should be enabled only when x87 FPU floating-point excep-
tion handlers are designed to use the fopcode to analyze program performance or restart a
program after an exception has been handled.

8.1.9. Saving the x87 FPU’s State with the FSTENV/FNSTENV
and FSAVE/FNSAVE Instructions

The FSTENV/FNSTENYV and FSAVE/FNSAVE instructions store x87 FPU state information in
memory for use by exception handlers and other system and application software. The
FSTENV/ENSTENYV instruction saves the contents of the status, control, tag, x87 FPU instruc-
tion pointer, x87 FPU operand pointer, and opcode registers. The FSAVE/FNSAVE instruction
stores that information plus the contents of the x87 FPU data registers. Note that the
FSAVE/FNSAVE instruction also initializes the x87 FPU to default values (just as the
FINIT/FNINIT instruction does) after it has saved the original state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating mode of
the processor (protected mode or real-address mode) and on the operand-size attribute in effect
(32-bit or 16-bit). See Figures 8-9 through 8-12. In virtual-8086 mode or SMM, the real-address
mode formats shown in Figure 8-12 is used. See “Using the FPU in SMM” in Chapter 13 of the
IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for special considerations for
using the x87 FPU while in SMM.

8-13

PROGRAMMING WITH THE X87 FPU Intel®

The FLDENYV and FRSTOR instructions allow x87 FPU state information to be loaded from
memory into the x87 FPU. Here, the FLDENYV instruction loads only the status, control, tag, x87
FPU instruction pointer, x87 FPU operand pointer, and opcode registers, and the FRSTOR
instruction loads all the x87 FPU regi