Microsoft Visual C++ .NET Compiler Migration Guide

This document discusses the following new features and changes in the Visual C++ .NET compiler that are important to understand when porting code from a previous version of Visual C++:

· Multiple Definitions of a Template Specialization Through Typedefs

· Exporting Class Templates
· Warnings About Potential Portability Issues for Win64 (__w64, /Wp64)

· NaN Floating-Point Behavior

· for Loop Behavior Changes

· wchar_t and __wchar_t

· __int32 and int
· Implicitly Applying More Than One User-Defined Conversion
Multiple Definitions of a Template Specialization Through Typedefs

In previous versions of Visual C++, the compiler would accept multiple template specializations that resolved to the same actual type, although the additional definitions would never be available. The compiler will now detect these multiple definitions and give an error, C2084.

typedef int Type1;

typedef int Type2;

template <class T> void Func(T);

void Func<Type1>(Type1) /*define specialization for void Func<int>(int)*/

{

}

void Func<Type2>(Type2) /*error: second definition of void Func<int>(int)*/

{

}

Exporting Class Templates

If a class is marked declspec(dllexport), any specializations of class templates in the class hierarchy are implicitly marked as declspec(dllexport).
Warnings About Potential Portability Issues for Win64 (__w64, /Wp64)

When compiling with /Wp64, 32-bit variables that were declared with __w64 will be treated as larger than 32 bits for the purpose of generating warnings about potential data loss during conversions. The CRT, MFC, and ATL libraries all make use of __w64 for types that are 32 bits on Win32 and 64 bits on Win64.

For example:

#include <stdio.h>

int main()

{

int
a=0,

b=1,

c=&a - &b; /* C4244 here as ptrdiff_t is __w64 int on Win32, and __int64 on Win64 */

return c;

}

For more information, see the topic "__w64" in the Visual C++ online documentation.

NaN Floating-Point Behavior

NaN comparisons have changed to better support IEEE 754.

· NaN equality rules have changed: NaN == NaN tests now return false, NaN != NaN tests now return true.

· NaN ordering tests always return false: NaN [<, <=, >, >=] [any number] will be false.

For more information, see the section "Not a Number (NAN)" in the topic "C++ Compiler, Linker, and C++ Language" in the Visual C++ online documentation.

for Loop Behavior Changes

The default behavior of for loops is nearly the same as it was in Visual C++ 6.0, with a few important differences:

· Should the type used in a for-init-statement have a destructor, the variables declared in the for-init-statement will have their destructors executed on exiting the for loop they are declared in instead of at the end of the scope the for statement is in.

· The variable in the for-init-statement can have the same name as another variable in the containing scope. The variable selected will be the closest declaration already reached within the scope.

For example:

#include <stdio.h>

struct S

{

S(int ii):i(ii) { printf("S(%d)\n",i); }

~S() { printf("~S(%d)\n",i); }

void print() { printf("%d\n", i); }

int i;

};

int main()

{

S s(0); //prints "S(0)"

for (S s(1),s2(2);;)//prints "S(1)" and "S(2)"

break;//prints "~S(2)" and "~S(1)"

S s2(3);//prints "S(3)" and also gives a C4288 warning at compile time

s2.print(); //prints "3"

s.print(); //prints "1" and also gives a C4288 warning at compile time

}//prints "~S(3)" and "~S(0)"

For more information, see the section "for Loops and the C++ Standard" in the topic "The for Statement" in the Visual C++ online documentation.

wchar_t and __wchar_t

When the /Zc:wchar_t compiler option is specified, the type wchar_t becomes a native type that maps to __wchar_t in the same way that short maps to __int16. Otherwise, it is normally defined to unsigned short using a typedef in many of the standard headers.

By providing overloads for both the unsigned short and __wchar_t variations of wchar_t, you can create libraries that can easily be linked with code compiled with or without /Zc:wchar_t and avoid the need to provide two different builds of the library (one with and one without /Zc:wchar_t enabled).

For more information, see the topic "/Zc:wchar_t (wchar_t Is Native Type)" in the Visual C++ online documentation.

__int32 and int

In Visual C++ 6.0, __int32 and int were treated as separate types. The compiler now treats __int32 as a synonym for int. This means that the compiler will detect multiple definitions if a function is overloaded on both __int32 and int and give an error, C2084.

void f(__int32) {

}

void f(int) { // error second definition of f(int)

}

int main() {

__int32 i = 0;

int j = 0;

f(i);

f(j);

return 0;

}

Implicitly Applying More Than One User-Defined Conversion

A warning has been added to the compiler for cases where more than one user-defined conversion is implicitly applied to a single value, C4927.

struct B {

 operator int () { return 0; }

};

struct A {

 A(int i) { }

};

A f() {

 B b;

 return b; // warning

}

void main() {

A a = f();

}

