Filename: ManagedExtensionsSpecRTM.doc
109

Managed Extensions for C++ Specification

Abstract

This document describes the Managed Extensions for the Visual C++ programming language. These extensions encompass a set of features that will support the common type system and the common language runtime. The Managed Extensions are compatible with the C++ ISO Standard.

Specification Format

The sections of this specification have a pattern that usually comprises:

· An introduction to a feature being described.

· Characteristics that describe what is allowed for the feature.

· Constraints that describe conditions that a feature must meet. If a feature violates a constraint that can be detected at compile time, the compiler will emit a diagnostic. Otherwise, if the violation of the constraint can be detected by the common language runtime, it will throw a runtime exception.

Contents

41 Introduction

2 Overview of Managed Types
5
3 Managed Extensions Keywords
6
4 __gc Classes
7
4.1 operator __gc new
11
4.2 Destructors and operator delete
13
4.3 Implementation of Destructors via Finalize
16
4.4 __nogc Classes
17
4.5 __gc Arrays
17
4.5.1 Automatic Array Initialization
19
4.5.2 Function Return Syntax
19
4.5.3 __gc and __nogc Keywords and Arrays
19
4.5.4 Default Allocation Rules
20
4.5.5 Multidimensional Arrays
20
4.5.6 Array Covariance
21
4.5.7 Aggregate Initialization
22
4.5.8 The ParamArray Attribute
22
5 __value Classes
24
5.1 Primitive Types
28
5.2 Boxed __value Classes
29
5.2.1 __box Operation
29
5.2.2 Boxed Type Declarations
30
5.2.3 Unboxing
31
5.2.4 Calling Methods on System::ValueType
32
6 __gc Interfaces
33
6.1 Implementation of Ambiguous Base Interface Methods
34
6.2 Default Implementations
36
7 __gc Pointers
36
7.1 Pointer Defaults
38
7.2 Address-of and Managed Classes
39
7.3 Address-of and Static Members
40
7.4 Interior vs. Whole __gc Pointers
41
7.5 Pointer Casts
43
7.5.1 dynamic_cast
44
7.5.2 __try_cast
45
7.5.3 static_cast
45
7.5.4 reinterpret_cast
46
7.5.5 const_cast
47
7.5.6 C-Style Casts
47
7.6 __gc Pointers and Overload Resolution
47
7.7 Pinning Pointers
48
7.8 Direct Access to Characters
51
7.9 __gc Pointer-to-Members
52
8 __gc References
52
9 Delegates
54
10 Events
57
11 System::String
63
11.1 C++ String Literals
63
11.2 Runtime String Literals
64
11.2.1 String Concatenation and Output
65
12 __value Enums
66
12.1 Weak Enumerator Names
67
12.2 Enumerator Qualification
68
12.3 Underlying Type
68
12.4 Boxed enums and System::Enum
69
13 Properties
69
13.1 Scalar Properties
70
13.2 Indexed Properties
70
13.3 Injected Pseudo-Member
76
13.4 Preventing Ambiguity of Array and Indexed Properties
77
14 Exception Handling
79
14.1 throw
79
14.2 try/catch
79
14.3 __finally Keyword
81
14.4 Unwinding
82
14.5 Catching Unmanaged C++ Exceptions
82
15 Nested Classes
83
16 Mixing Managed and Unmanaged Classes
84
16.1 Unmanaged Classes Embedded in Managed Classes
84
16.2 __nogc Pointers in Managed Classes
86
16.3 __gc Pointers in Unmanaged Classes
87
17 __abstract Keyword
88
18 __sealed Keyword
88
19 Static Class Constructors
89
20 Managed Operators
91
20.1 Arithmetic, Logical, and Bitwise Operators
92
20.2 Conversion Operators
95
20.2.1 Convert-From Operators
95
20.2.2 Convert-To Operators
96
21 Metadata
97
21.1 Class Visibility
97
21.2 Member Visibility
97
21.3 Extensible Metadata
99
21.3.1 Custom Attributes
99
21.3.2 Declarative Security
104
21.4 Importing Metadata with #using
104
21.5 Metadata as Binary Headers
105
22 __identifier Keyword
105
23 The __typeof Keyword
106
24 Compiling Code for the Runtime
106
24.1 Projects That Use Managed Extensions
107
24.2 Porting Unmanaged Code to the .NET Framework
107
25 Unsupported Features
107
25.1 Verifiable Code
107
25.2 Managed Templates
108
25.3 C++ RTTI versus Runtime Reflection
108
25.4 Non-Public Inheritance
108
25.5 const and volatile on Member Functions
108
26 References
108

1 Introduction

The common language runtime executes Microsoft intermediate language (MSIL). The MSIL instruction set is sufficiently powerful to run any existing C++ program. Viewed in this way, the runtime is another target architecture for the C++ language. However once a C++ program is compiled to MSIL, it may utilize the powerful features of the runtime.

The term managed code refers to the MSIL code produced by the compiler. Compiling to managed code is accomplished by use of the /clr compiler option. Unmanaged code is the native machine target code produced by an ordinary compilation.

The vast majority of existing C++ functions can be compiled to MSIL with no change in semantics, as described in §24.1.

At the time of this release, there are some exceptions that must be compiled to native code. However, since managed and unmanaged code can be mixed in a single compilation unit, this does not prevent the program as a whole from accessing managed features.

Compiling with the /clr option does not alter the semantics of an existing C++ program. For example, C++ classes do not become garbage collected or seamlessly interoperate with Visual Basic unless they are modified. Such features are only provided for Managed Extensions classes, as described here.

As mentioned above, any C++ program can be compiled to the common language runtime. However, the runtime defines a particular object model that does not support all features of the C++ language. For example, multiple inheritance of classes is not supported. There are currently no compiler options or pragmas that turn all of a C++ program's classes into Managed Extensions classes.

There are three main design goals of the Managed Extensions:

· Protection of Investment. Make it possible to expose all or part of existing C++ programs to the Microsoft .NET Framework. Likewise, make it possible to access managed features in existing C++ programs.

· Access and Control. Allow mixing of managed and unmanaged code, provide direct access to low-level unmanaged APIs, and so on. The highest performance managed APIs can be written in Visual C++ with Managed Extensions. Also allow access and control over managed features such as boxing. This provides better performance.

· Ease of Use. The extensions are first-class features of the language and are directly supported by the compiler. There are no preprocessing or debugger issues for the user to resolve.

The following example shows the compilation of a simple "hello, world" C++ program using the Managed Extensions:

Example

#using <mscorlib.dll>

int main() {

 System::Console::WriteLine(S"hello, world");

}

Output

hello, world

2 Overview of Managed Types

Managed classes are an annotated subset of C++ classes that are compiled directly into the object model of the common language runtime. They provide full access to the runtime features:

· Extensible metadata. This is information that fully describes the types and interfaces provided by a managed component. This is used in producing software components. The inconvenience of COM type libraries and limitations of OLE automation types are removed with managed classes.

· Garbage collection. The Managed Extensions allow the programmer to specify that certain classes be allocated exclusively on the garbage-collected heap. This removes the burden of lifetime management for the programmer. AddRef/Release bugs and circular-reference leaks cannot occur with managed classes.

· Simplified language interoperability. Any managed class is immediately usable from any language that targets the object model of the common language runtime. MIDL files and BSTRs are no longer required. Other Microsoft Visual Studio .NET languages that target the common language runtime include Visual Basic, Visual C#, and JScript. Third parties are currently developing translators for APL, COBOL, Eiffel, Haskell, ML, Oberon, Objective CAML, Pascal, Perl, Python, Scheme, and Smalltalk.

· Versioning. New methods and data members can be added to managed classes without breaking binary compatibility with existing client software. This eliminates a common problem with C++ class libraries.

· Binary headers. Any file containing metadata (.exe, .obj, .dll, or .netmodule) can be referenced from a C++ source file. This has several advantages:

· The precompiled form speeds compilation over text files.

· Unlike header files. metadata cannot get "out of date" with its associated executable code.

· Files containing metadata are more manageable than precompiled header (PCH) files since they are more granular.

Managed types consist of classes, enums, pointers, and references. There are three kinds of managed classes:

· A __gc class (§4) is allocated on the common language runtime heap and is garbage collected. It is the most general-purpose managed class.

· A __value class (§5) is designed to represent small, short-lived data items for which full garbage collection would be too costly.

· A __gc interface (§6) offers direct support for COM-style interface programming in C++.

An ordinary C++ class is called an unmanaged class.

Other managed types such as a __value enum (§12), __gc pointer (§7), and __gc reference (§8) are similar to their unmanaged counterparts.

Each of these is described in detail in this specification.

3 Managed Extensions Keywords

The following fourteen keywords are used to access the managed extensions in the Visual C++ language.

	__abstract
	__box
	__delegate
	__event

	__gc
	__identifier
	__interface
	__nogc

	__pin
	__property
	__sealed
	__try_cast

	__typeof
	__value
	
	

4 __gc Classes

The keyword __gc on a class or struct indicates that it is garbage-collected, and its lifetime is managed by the common language runtime. No explicit calls to delete are required in the user program.

Example

#using <mscorlib.dll>

__gc class G {

public:

 int k;

 int sum(int);

};

G::sum(int i) { return i * (i + 1) / 2; }

int main() {

 G * g = new G;

 System::Console::WriteLine(g->sum(4));

}

Output

10

Example

#using <mscorlib.dll>

using namespace System;

__gc class M {

public:

 int i;

};

int main() {

 while(true) {

 M *m = new M; // runs forever without exhausting heap

 }

}

As in C++, the difference between a __gc struct and a __gc class is that the default access and inheritance of a struct is public, and that of a class is private.

Characteristics
· A declaration of a __gc class shall always have the __gc keyword.

· A __gc class can have a data member that has type pointer-to any unmanaged type.

· A __gc class can contain a user-defined destructor (§4.2).

· Operator delete can be called on a pointer-to a __gc class in order to force the destructor to run immediately (§4.2).

· A __gc class can implement any number of __gc interfaces (§6).

· A __gc class can contain properties (§13).

· A __gc class can be marked with the __abstract keyword (§17).

· A __gc class can be marked as "sealed" (§18).

· A __gc class can declare a static class constructor (§19).

· A __gc class can declare a constructor.

· A __gc class can have a visibility specifier (§21.1).

· A __gc class can contain an embedded object of an unmanaged POD type. POD types are defined in Section 9, Paragraph 4 of the C++ ISO Standardiv. In particular, they contain no non-static data members, virtual functions, base classes, or user-defined constructors, copy constructors, copy assignment operator, or destructor.

Example

#using <mscorlib.dll>

struct S1 {

 int i;

 void f(); // non-static (instance) method

};

struct S2 {

 int i;

 static void f(); // static method

};

__gc class M {

public:

 S1 *pS1; // ok: pointer-to

 S1 s1; // ok: object of unmanaged POD type

 S2 s2; // ok: object of unmanaged POD type

};

Constraints

· A __gc class shall not inherit from an unmanaged class.

· A __gc class shall not have an unmanaged class derived from it.

· A __gc class shall not inherit from more than one managed class.

· A __gc class shall not declare a user-defined copy constructor.

· A __gc class shall not declare or define friend classes or functions.

· A __gc class shall not declare or define a new or delete operator.

· A __gc class shall not contain a using declaration.

· The calling convention of a member function of a __gc class cannot be redefined to a native C++ calling convention, for example, to __cdecl.

Example

#using <mscorlib.dll>

__gc struct B {

 void f(int);

};

__gc struct D: B {

 using B::f; // C3182

 void f(char) { f(2); };

};

· A __gc class shall not have the sizeof or offsetof operators applied to it. For versioning to work, client code must not hard-code data about the size of a managed object.

· A __gc class shall not have member functions with const or volatile modifiers.

Example

#using <mscorlib.dll>

__gc class A {

public:

 int f() const { return 1; } // C3842

};

· A __gc class shall not declare a data member of whose type is an interior pointer subtype (see also §7.4). This constraint includes any subtypes.

Example

#using <mscorlib.dll>

__gc class A {

public:

 Int32 __gc * k; // error

 Int32 __gc * __nogc * l; // error

 String __gc * __gc * __nogc * __nogc * s; // error

};

· A __gc class shall declare no more than one base __gc class. If no base class is specified, it is assumed to be the .NET Framework root class System::Object.

· All objects of __gc class shall be created on the common language runtime's garbage-collected heap using the built-in operator new. Therefore, no object declaration, parameter declaration, or function return shall have __gc class type. Only pointer-to is allowed.

Example

// C3149 expected

#using <mscorlib.dll>

using System::String;

__gc class M {

 String s1; // error

 String *s2; // ok

 String f1(); // error

 String * f2(); // ok

 void g1(String s); // error

 void g2(String * s); // ok

};

· Operator delete shall not be called on a pointer to an object of a __gc class that has no user-defined destructor.

· A __gc class shall not override operator& or operator new.

· The __gc and __nogc keywords shall not be used to qualify an unmanaged class in an object declaration.

Example

// C3150 expected

#using <mscorlib.dll>

// unmanaged class

struct X { int i; };

int main() {

 __gc X *x; // error

}

· The __gc keyword shall not appear with the union keyword.

Unions are implemented by using the StructLayout and FieldOffset attributes.

Example

#using <mscorlib.dll>

using System::Console;

using namespace System::Runtime::InteropServices;

[StructLayout(LayoutKind::Explicit)]

public __value struct MyUnion {

 [FieldOffset(0)] int a;

 [FieldOffset(0)] char c __nogc[4];

};

int main() {

 MyUnion m;

 m.a = 0x01020304;

 Console::Write(m.c[0]);

 Console::Write(m.c[1]);

 Console::Write(m.c[2]);

 Console::WriteLine(m.c[3]);

}

Output

4321

4.1 operator __gc new

Objects of __gc classes are created using the managed operator __gc new. Memory for the object is allocated on the garbage-collected heap that is managed by the common language runtime.

Characteristics
· When creating an object of a __gc class, the __gc keyword can be omitted from the new operator. The result is equivalent to using __gc new.

Constraints

· __nogc new shall not be used to create an object of a __gc class.

· A call to the managed new operator shall not have placement arguments.

#using <mscorlib.dll>

__gc struct M {

};

char bytes[256];

int main() {

 M *m1 = new (&bytes) M(); // C3828

}

The semantics of constructors in the common language runtime differs from C++. Suppose the constructor of a derived class is called, and the base class's constructor calls a virtual function that is overridden in the derived class.

In Managed Extensions and other .NET languages, the derived class's overriding function will be called. This occurs before the constructor for the derived class is called. Any data members of the derived class are zero-initialized by the runtime and will not have the values prescribed by their constructor. The call to the derived class's constructor then may reinitialize data members to other values.

#using <mscorlib.dll>

using namespace System;

 __gc class base {

public:

 base() { grains = count_grains(2); }

 virtual int count_grains(int i) { return i*i; }

 void update_grains(int i) { grains = i; }

 int show_grains() { return grains; }

protected:

 int grains;

};

__gc class derived: public base {

public:

 derived(int val):value(val) { }

 int count_grains(int i) { return i*i*value; }

private:

 int value;

};

int main() {

 base * b = new base;

 // similar to C++

 Console::WriteLine(b ->show_grains());

 // derived's count_grains called by base

 derived * d = new derived(2);

 // grains calculated from runtime zero-initalized value

 Console::WriteLine(d ->show_grains());

 // grains calculated from derived constructor's initialized value

 Console::WriteLine(d->count_grains(2));

}

Output

4

0

8

4.2 Destructors and operator delete

A __gc class can have a destructor. During garbage collection, the destructor for a __gc class will be invoked by the common language runtime before the associated memory is released. Following C++ rules, a derived class destructor also calls any base class destructors.

Example

#using <mscorlib.dll>

using namespace System;

__gc class Base {

public:

 ~Base() { Console::WriteLine(S"Base::~Base"); }

};

__gc class Derived : public Base {

public:

 ~Derived() { Console::WriteLine(S"Derived::~Derived"); }

};

int main() {

 Derived *d = new Derived();

} // garbage collection is done at program exit

Output

Derived::~Derived

Base::~Base

If a __gc class derives from a __gc class authored in another language, the Finalize method, if any, of the base class is treated as a destructor, and is called automatically at the end of the destructor of the derived class.

An object of a __gc class can only be created by a call to new, which returns a pointer to the object. During execution of a program, the common language runtime deletes unused objects and compacts the runtime heap. The garbage collector will call the destructor of any deleted objects. The order in which destructors are called is unpredictable.

A destructor can be invoked directly by the user or via operator delete. It is equivalent to explicitly calling the destructor as described above (§4.2). No memory is freed until a subsequent garbage collection cycle. The destructor will not be called again if the memory for the object is reclaimed during a subsequent garbage collection cycle.

Example

#using <mscorlib.dll>

#include <iostream>

using namespace std;

__gc struct G {

 int *p;

 G() { p = new int; }

 ~G() {

 cout << "G::~G" << endl;

 delete p;

 }

};

int main() {

 G *pG = new G;

 *pG->p = 10;

 pG->~G(); // destructor is called immediately

}

Output

G::~G

Note As with unmanaged C++ classes, special care should be used when calling destructors directly. If you are not certain that an object is unused, you should let the garbage collector automatically and safely reclaim it.

Characteristic

· If delete is called on an expression whose compile-time type is pointer to __gc class G, then G shall declare a user-defined destructor.

The programmer can call Finalize on a list of base class pointers.

Example

#using <mscorlib.dll>

using namespace System;

private __gc class ExposeFinalize{

 public: void callFinalize() {

 System::GC::SuppressFinalize(this);

 this->Finalize();

 }

};

static inline void CallFinalize(System::Object *pO) {

 reinterpret_cast<ExposeFinalize*>(pO)->callFinalize();

}

void destruct_all(Object* base_list[]) {

 for (int i = 0; i < base_list.Length; ++i) {

CallFinalize(base_list[i]);

}

}

4.3 Implementation of Destructors via Finalize

Finalize is a method that is called on an object before it is deleted by the runtime garbage collector. This process is referred to as finalization. It takes place on a separate thread from execution. The execution order for Finalize calls in garbage-collected objects is unpredictable.

Destructors for __gc classes are implemented by the compiler renaming them to Finalize methods. The compiler injects code into each Finalize method to call any base object's Finalize. It also injects code to suppress any further finalization. The code is injected in the destructor because that is only called by delete, not the runtime garbage collector.

Example

This code:

#using <mscorlib.dll>

__gc class A {

public:

 ~A() { System::Console::WriteLine(S"in ~A"); }

};

__gc class B : public A {

public:

 ~B() { }

};

is effectively transformed by the compiler to:

// do not compile

__gc class A {

public:

 A::Finalize() { Console::WriteLine(S"in ~A"); }

 virtual ~A() {

 System::GC::SuppressFinalize(this);

 A::Finalize();

 }

};

__gc class B : public A {

public:

 B::Finalize() { A::Finalize(); }

 virtual ~B() {

 System::GC:SuppressFinalize(this);

 B::Finalize();

 }

};

Characteristic

· A user-defined destructor of a __gc class is always virtual.

Constraints

· Finalize cannot be defined by the user. It is a protected virtual member of System::Object.

Example

#using <mscorlib.dll>

__gc class C {

public:

 virtual void Finalize(); // C3840 can't define Finalize

};

4.4 __nogc Classes

The keyword __nogc on a class or struct indicates that it is an unmanaged C++ class or struct.

Characteristics
· The __nogc keyword on a class, struct, or new can be omitted. If it is unspecified, the default is __nogc.

· __nogc new can be used to allocate memory for a __nogc class. The __nogc keyword can be omitted in this context, and the result is equivalent.

Constraint

· __gc new shall not be used to allocate memory for a __nogc class.

4.5 __gc Arrays

A __gc array is a dynamic array that is allocated on the common language runtime heap. The number of elements of the array is not part of the type. A single array variable may refer to arrays of different sizes.

Example

#using <mscorlib.dll>

using namespace System;

int main() {

 Int32 ia[] = __gc new Int32[100];

 ia = new Int32[200];

}

The indices of a __gc array are zero-based, as in standard C++. A __gc array is subscripted using ordinary C++ array brackets. Unlike standard C++, subscripting is not a synonym for pointer arithmetic, and is not commutative.

Characteristics
· A __gc array shall be allocated using the managed operator __gc new.

· Using new to allocate a managed array defaults to __gc new.

 Constraints

· The type of an element of a __gc array shall only be a __value class, or a __gc pointer to a __gc class.

· __nogc new shall not be used to allocate an array of managed type.

· A __gc array variable definition shall not specify a size. The size of the array is given in the call to the managed operator __gc new.

A __gc array is itself a __gc object. It is actually a pointer into the common language runtime heap. The indirection of the pointer has been factored into the subscripting operator. As a __gc object, it has the same restrictions as a __gc class (§4). Most notably, the element type cannot be an unmanaged C++ class that is not a POD type.

All __gc arrays inherit from System::Array. Any method or property of System::Array can be applied directly to the array variable.

Example

#using <mscorlib.dll>

using namespace System;

int main() {

 Int32 ia[] = __gc new Int32[100];

 Console::WriteLine(ia->Length);

}

Output

100

4.5.1 Automatic Array Initialization

When allocating an array whose element type is a C++ primitive data type, the elements are 0-initialized.

When allocating an array whose element type is pointer-to a __gc class the elements are 0-initialized.

When allocating an array whose element type is a value type V, the default constructor for V is applied to each array element.

4.5.2 Function Return Syntax

Unlike Standard C++, a __gc array can be returned from a function. The syntax follows the C++ style for putting the array brackets after the declarator.

Example

#using <mscorlib.dll>

using namespace System;

// f returns a __gc array of Int32

Int32 f() [] { return new Int32[100]; };

int main() {

 f()[5] = 20;

}

4.5.3 __gc and __nogc Keywords and Arrays

The keywords __gc and __nogc can be applied to arrays whose element type is a C++ primitive type or the corresponding runtime __value type (§5.1).

Example

#using <mscorlib.dll>

using namespace System;

int main() {

 int ia1 __gc[] = new int __gc[100]; // __gc array

 Int32 ia2 __nogc[100]; // __nogc array

};

Constraints

· A __nogc array declared in a __gc or __value class shall use the __nogc keyword.

Example

#using <mscorlib.dll>

__gc class G {

 char a[10]; // C2697 did not specify __gc or __nogc

 char b __nogc[10]; // ok

};
· __nogc new shall not be used to allocate memory for a __gc array.

· __gc new shall not be used to allocate memory for a __nogc array.

4.5.4 Default Allocation Rules

The default allocation rules follow from Section 4.4 for __nogc classes.

Characteristics
· Any array of a managed element type is by default a __gc array.

· Any array of an unmanaged element type is by default a __nogc array.

Example

#using <mscorlib.dll>

int main() {

 int ia __gc[] = new int __gc[100]; // __gc array

};

4.5.5 Multidimensional Arrays

Managed Extensions supports multidimensional, zero-based arrays. The number of dimensions is equal to the number of commas in the declaration, plus one.

Example

#using <mscorlib.dll>

using namespace System;

int main() {

 Int32 ia[,] = new Int32[10,20]; // two dimensions

 for (int i = 0 ; i < ia->GetLength(0) ; ++i) {

 for (int k = 0 ; k < ia->GetLength(1) ; ++k) {

 ia[i,k] = i + k;

 }

 }

}

Constraint

· The C++ comma operator shall not be used inside __gc array indices unless it is nested within parentheses.

4.5.6 Array Covariance

Given __gc class D with direct or indirect base class B, an array of type D*[] can be assigned to an array variable of type B*[].

Example

#using <mscorlib.dll>

using namespace System;

int main() {

 Object* oa[] = new String*[20]; // String derives from Object

}

Constraint

· An assignment to an array element shall be assignment-compatible with the dynamic type of the array. An assignment to an array element with incompatible type will cause System::ArrayTypeMismatchException to be thrown.

Example

#using <mscorlib.dll>

using namespace System;

__gc struct Base { int i; };

__gc struct Derived : Base {};

__gc struct Derived2 : Base {};

__gc struct Derived3 : Derived {};

__gc struct Other { short s; };

int main() {

 Derived* d[] = new Derived*[100];

 // ok by array covariance

 Base* b[] = d;

 // invalid

 // b[0] = new Other;

 // error (runtime exception)

 // b[1] = new Derived2;

 // error (runtime exception),

 // must be "at least" a Derived.

 // b[0] = new Base;

 b[1] = new Derived;

 b[0] = new Derived3;

}

Array covariance does not apply to arrays of value class type. For example, Int32[] cannot be converted to Object*[], even via boxing.

4.5.7 Aggregate Initialization

A __gc array can be initialized with a curly-brace list, following the same rules as for __nogc arrays.

Aggregate initialization is useful for constructing function arguments of array type. Examples are Console::WriteLine, System::Array::SetValue, and System::Array::GetValue.

Example

#using <mscorlib.dll>

using namespace System;

int main() {

 String *args[] = {S"hello", S"world", S"how", S"are", S"you"};

 Console::WriteLine(S"{0} {1} {2} {3} {4}", args);

}

Output

hello world how are you

4.5.8 The ParamArray Attribute
Functions with a variable number of arguments can be implemented in Managed Extensions by using the ParamArray attribute.

Example

#using <mscorlib.dll>

using namespace System;

namespace my_namespace {

 public __gc class C {

 public:

 void f([ParamArray] String * a[]) {

 }

 };

}

The function f can be called from Visual C# or Visual Basic, for example, as though it were a function that can take a variable number of arguments.

In the Visual C# language
, a parameter with the ParamArray attribute can be called with a variable number of arguments. The following code example is in Visual C#.

Example

// mcpp_paramarray2.cs

// compile with: /r:mcpp_paramarray.dll

using my_namespace;

public class X {

 static void Main() {

 // Visual C# will generate a String array on the fly to match the

 // ParamArray attribute

 C myc = new C();

 myc.f("hello", "there", "world");

 }

}

A call to f in Managed Extensions can only pass an initialized array.

Example

#using <mscorlib.dll>

using namespace System;

namespace my_namespace {

 public __gc class C {

 public:

 void f([ParamArray] String * a[]) {

 }

 };

}

int main() {

 using namespace my_namespace;

 C * myc = new C();

 String * args[] = {S"hello", S"there", S"world"};

 myc->f(args);

}

5 __value Classes

__value classes are intended to hold small data items with short lifetimes. A __value class differs from a __gc class in that objects can exist on the runtime stack as well as the runtime heap. This avoids the overhead of garbage collection for every allocation or deallocation.

__value classes can be declared as local variables, parameters, and return values. They can also be embedded in __gc classes, and as static or C++ heap-allocated variables as described below.

The keyword __value introduces the declaration of a __value class.

Example

#using <mscorlib.dll>

using namespace System;

__value struct V { int i; };

__gc struct G {

 // embedded in __gc class

 V v;

};

V f(V v) { // pass by value on the runtime stack

 v.i += 1; // does not affect value at call site

 return v; // return by value

}

int main() {

 V v1 = {10}; // declare & initialize on runtime stack

 V v2 = f(v1); // pass by value and return by value

 G *pG = new G; // allocated as part of G instance

 pG->v = v1; // copy value

 pG->v.i += v2.i;

 Console::WriteLine(v1.i);

 Console::WriteLine(v2.i);

 Console::WriteLine(pG->v.i);

}

Output

10

11

21

The default layout for value classes is System::Reflection::TypeAttributes::LayoutSequential.

As in C++, the difference between a __value struct and a __value class is that the default access and inheritance of a struct is public, and that of a class is private.

Characteristics
The following are supported for __value classes.

· A declaration of a __value class shall always have the __value keyword.

· A __value class can have a data member that has type pointer-to any unmanaged type.

· A __value class can override any method of the managed class System::ValueType (§5.2.3).

· A __value class can implement any number of __gc interfaces (§6) and it must implement all of their methods.

· An object of a __value class that does not contain any __gc pointers (§7) can be allocated anywhere an unmanaged class can be allocated, for example, the C++ heap or global data.

· A __value class can contain properties (§13).

· A __value class can be marked as "sealed" (§18).

· A __value class can declare a constructor.

· A __value class can declare a static class constructor (§19).

· A __value class can have a visibility specifier (§21.1).

· A __value class can contain an embedded object of an unmanaged POD type. POD types are defined in Section 9, Paragraph 4 of the C++ ISO Standardiv. In particular, they contain no non-static data members, virtual functions, base classes, or user-defined constructors, copy constructors, copy assignment operator, or destructor.

Example

#using <mscorlib.dll>

struct S1 {

 int i;

 void f(); // non-static (instance) method

};

struct S2 {

 int i;

 static void f(); // static method

};

__value class M {

public:

 S1 *pS1; // ok: pointer-to

 S1 s1; // ok: object of unmanaged POD type

 S2 s2; // ok: object of unmanaged POD type

};

· A __value class object can be allocated on the runtime stack. If it is embedded in a __gc object, it can also be allocated on the common language runtime heap.

· Explicit allocation of memory on the C++ heap for an object of a __value class must be done with __nogc new only.

· If no default constructor is defined for a __value class, all of its data members are initialized to zero by default.
The semantics of constructors in __value classes differs from C++ for interoperability reasons. If a constructor is declared, the default constructor can still be called.

#using <mscorlib.dll>

using namespace System;

__value class G {

public:

 G(int i) { grains = i; }

 void update_grains(int i) { grains = i; }

 int show_grains() { return grains; }

private:

 int grains;

};

int main() {

 G g; // C++ would not allow this

 g.update_grains(2);

 Console::WriteLine(g.show_grains());

}

Output

2

Constraints

The following apply to __value classes.

· A __value class shall not inherit from an unmanaged class.

· A __value class shall not have an unmanaged class derived from it.

· A __value class shall not inherit from more than one managed class.

· A __value class shall not declare a user-defined copy constructor.

· A __value class shall not declare or define friend classes or functions.

· A __value class shall not declare or define a new or delete operator.

· A __value class shall not contain a using declaration.

· The calling convention of a member function of a __value class cannot be redefined to a native C++ calling convention, for example, to __cdecl.

Example

#using <mscorlib.dll>

using namespace System;

__gc __interface I {

 void f(int);

};

__value struct D: I {

 using I::f; // C3182

 void f(char) { f(2); };

};

· A __value class shall not have the sizeof or offsetof operators applied to it. For versioning to work, client code must not hard-code data about the size of a managed object.

· A __value class shall not have member functions with const or volatile modifiers.

Example

#using <mscorlib.dll>

__value struct A {

 void f() const {} // C3842

};

· A __value class shall not declare a data member of whose type is an interior pointer subtype (see also §7.4). This constraint includes any subtypes.

Example

#using <mscorlib.dll>

using namespace System;

__value struct A {

 Int32 __gc * k; // C3160

 Int32 __gc * __nogc * l; // C3166

 String __gc * __gc * __nogc * __nogc * s; // C3166

};

· A __value class shall only inherit from __gc interfaces. It shall not inherit from __gc classes or other __value classes, including System::Object.

· A __value class shall not introduce any virtual methods. It shall only override methods of System::ValueType.

· A __value class shall not be a base class and is therefore implicitly sealed (§18). The __sealed keyword is allowed on value classes, but is not required.

· A __value class type shall not be the argument type of __gc new. However, an object of a __value class can exist in the common language runtime heap via embedding in a __gc object, or boxing.

5.1 Primitive Types

Every C++ primitive type corresponds directly to a __value class defined in the common language runtime base class library.

	C++ primitive type
	Runtime Base Class Library value type

	char
	SByte

	signed char
	SByte

	short
	Int16

	int
	Int32

	long
	Int32

	__int64
	Int64

	unsigned char
	Byte

	unsigned short
	UInt16

	unsigned int
	UInt32

	unsigned long
	UInt32

	unsigned __int64
	UInt64

	float
	Single

	double
	Double

	void
	Void

Note that char corresponds to Byte under the /J compiler option.

Generally, the C++ types and their __value class equivalents are interchangeable in Managed Extensions. The exception is that a pointer-to the common language runtime type is treated differently than a pointer-to the C++ primitive type as described in §5.1. Choosing between the C++ and runtime primitives is largely a matter of convenience.

Note that long and int are represented using the same underlying value type, Int32. To allow overloading methods on long and int the Managed Extensions use the custom modifier
 Microsoft.VisualC.IsLongModifier to distinguish the type long. The same is true for long double and double. The unqualified char type is modified by Microsoft.VisualC.NoSignSpecifiedModifier to distinguish it from either signed char or unsigned char. As specified by the Common Language Specification, other CLS languages may not be able to distinguish function overloads that differ only by these custom modifiers.

The Managed Extensions have no null literal, and 0 should be used instead.

5.2 Boxed __value Classes

Since all __gc objects are rooted in the class System::Object, it is easy to write generic routines, such as collections and maps, that work for any __gc class. However, value types do not share a common base, and they cannot be passed directly to methods expecting Object* arguments. To allow an object of a value type to be treated as a __gc class, the common language runtime supports boxing, in which an object of a value type is wrapped with a __gc class "stub" and copied to the common language runtime heap.

Note Unlike Visual C#, boxing is not implicit in Managed Extensions for C++ for performance reasons. The user must explicitly box value types where required.

5.2.1 __box Operation

The Managed Extensions expose the boxing operation via the __box() intrinsic. It takes an object of __value class type as the sole argument. Given argument type V, a __gc object of type "boxed V" is allocated on the common language runtime heap, the __value class is bitwise copied into it, and the address of the __gc object is returned.

Example

#using <mscorlib.dll>

using namespace System;

using System::Collections::Stack;

int main() {

 Stack* pS = new Stack();

 Int32 i = 5;

 pS->Push(i); // C2664 Push takes Object*

 pS->Push(__box(i)); // ok: __box returns Object*

}

Note The boxed version of the object of the __value class is a copy, and modifications to it do not modify the original unboxed object.

5.2.2 Boxed Type Declarations

For each __value class V there exists a unique __gc class type "boxed V" corresponding to V. All boxed __value classes are derived from the __gc class System::ValueType. Boxed enums are derived from the __gc class System::Enum. The user cannot define boxed types directly. The compiler generates them on demand as needed.

Boxed value classes are supported directly by allowing the __box keyword to modify a value type in a declaration. Referring to a boxed value class by its boxed type is more precise than using the generic type Object and allows the user to avoid expensive dynamic cast operations when accessing the underlying value class.

Example

#using <mscorlib.dll>

using namespace System;

__value struct V { int i; };

int main() {

 V v={10};

 __box V *pbV = __box(v);

 pbV->i += 10; // no cast required

 Object *o = __box(v);

 dynamic_cast<V*>(o)->i += 10; // dynamic_cast required

}

Characteristics
· A boxed __value class implicitly derives from System::ValueType, and therefore from System::Object.

· There is an implicit conversion from a __gc pointer to a boxed value class to a __gc pointer to the underlying value class.

Example

#using <mscorlib.dll>

using namespace System;

__value struct V {

 int i;

 void f() {};

};

int main() {

 V v={10};

 __box V* pbv = __box(v);

 V *pv = pbv; // implicit conversion to pointer-to V

 V v3 = *pbv; // implicit conversion from boxed V to V

 Object *o = pbv; // base pointer conversion

 pbv->f(); // can call methods on V directly

 pbv->GetType(); // can call methods on Object directly

 pbv->i += 10; // can access members of V directly

}

Constraints

· Since a boxed value type is a __gc class, any declaration of a boxed value class shall have pointer-to type.

Example

#using <mscorlib.dll>

__value struct V { int i; };

int main() {

 __box V bV; // C3149

 __box V* pbV; // ok

}

5.2.3 Unboxing

A boxed object of a __value class can be unboxed by using dynamic_cast (§7.5.1), or __try_cast (§7.5.2) to obtain a __gc pointer to the object that is stored in the "box" on the common language runtime heap. The __gc pointer can then be dereferenced to obtain a copy of the object of the __value class.

Example

#using <mscorlib.dll>

using namespace System;

__value struct V { int i; };

int main() {

 V v = {10};

 Object* o = __box(v); // copy value to runtime heap

 V v2 = *dynamic_cast<__box V*>(o); // copy back from runtime heap

}

5.2.4 Calling Methods on System::ValueType

A __value class can directly call any function it explicitly implements without being boxed first. This includes any overrides of virtual member functions defined in System::ValueType.

Example

#using <mscorlib.dll>

using namespace System;

__value struct V {

 // override ValueType::ToString

 String *ToString() { return i.ToString(); }

 int i;

};

int main() {

 V v = {10};

 Console::WriteLine(v.ToString()); // boxing not required

}

Output

10

To call a virtual function of System::ValueType that has not been overridden in the value type, boxing is required.

Example

#using <mscorlib.dll>

using namespace System;

__value struct V { int i; };

int main() {

 V v = {10};

 v.i = 10;

 // Console::WriteLine(v.ToString()); // C3610 boxing required

 Console::WriteLine(__box(v)->ToString()); // ok: prints typename V

}

Output

V

C++ primitive types follow the same rules for boxing as value types. For example, you do not need to box a C++ primitive type before calling methods on its underlying value type.
Example

#using <mscorlib.dll>

int main() {

 int i = 10;

 System::Console::WriteLine(i.ToString()); // no need to box

 System::Console::WriteLine((5).ToString()); // no need to box

}

Output

10

5

Note The expression 5.ToString is syntactically incorrect due to C++ rules for token processing. Literal values should be surrounded by parentheses when invoking __value class methods on them.

6 __gc Interfaces

A __gc interface embodies the COM notion of an interface. An interface declaration is similar to a class declaration, except for the class-key __interface. The __gc keyword is used when declaring a __gc interface since __gc interface pointers must point to __gc classes.
Example

#using <mscorlib.dll>

__gc __interface Ibase { void f(); };

Any number of __gc interfaces can be implemented by a __gc class. Member functions in the __gc class implement those with the same name and signature in the __gc interface.

Characteristics
The following features are supported for __gc interfaces:

· All methods of an interface are implicitly pure virtual. Neither the keyword virtual nor the suffix =0 is required on an interface method declaration, although both are allowed.

· A __gc interface can contain a nested declaration of a __value enum (§12).

· The __abstract keyword (§17) is redundant for an interface, but is allowed.

· All __gc interfaces implicitly derive from System::Object. Explicit derivation from System::Object is redundant, but is allowed.

Constraints

The following constraints apply to __gc interfaces:

· They shall contain no data members.

· They shall contain no static members of any kind.

· They shall contain no declarations of classes, managed or unmanaged.

· They shall contain no access specifier other than public, which is the default.

· They shall not provide an implementation for any of their methods.

· They shall explicitly inherit only from other interfaces or the class System::Object.

· They shall not be marked with the __sealed keyword (§18).

6.1 Implementation of Ambiguous Base Interface Methods

The Managed Extensions allow two or more base __gc interfaces to declare methods with identical names and signatures. To avoid ambiguity, they must be defined using a fully qualified name in the definition and must be called by first converting to the appropriate base.

Example

#using <mscorlib.dll>

__gc __interface Ibase1 { void f(); };

__gc __interface Ibase2 { int f(); };

__gc struct C : Ibase1, Ibase2 {

 void Ibase1::f() {};

 int Ibase2::f() { return 0; };

};

Calling f from an object of C gives a runtime error for an ambiguous call to an overloaded function. A cast to the appropriate interface shall be used to call the correct member function.

Example

#using <mscorlib.dll>

__gc __interface Ibase1 { void f(); };

__gc __interface Ibase2 { int f(); };

__gc struct C : Ibase1, Ibase2 {

 void Ibase1::f() {};

 int Ibase2::f() { return 0; };

};

int main() {

 C * hc = new C;

 // hc -> f(); // error: ambiguous call

 __try_cast <Ibase1 *>(hc)-> f();

 int i = __try_cast<Ibase2 *>(hc)-> f();

}

There is no ambiguity if the member function declarations have the same signature and there is an unqualified definition of it in the derived class.

Example

#using <mscorlib.dll>

using namespace System;

__gc __interface Ibase1 { int f(int); };

__gc __interface Ibase2 { int f(int); };

__gc class C: public Ibase1, public Ibase2 {

public:

 int f(int i)

 { // this definition implements both member functions

 return 2 * i - 1;

 };

};

int main() {

 C * c = new C;

 Console::WriteLine((c -> f(1)).ToString());

 Console::WriteLine((__try_cast <Ibase1 *>(c)->f(2)).ToString());

 Console::WriteLine((__try_cast <Ibase2 *>(c)->f(3)).ToString());

}

Output

1

3

5

6.2 Default Implementations

Consider class D that derives, directly or indirectly, from base class B and interface I, where B and I declare a method f with identical signature. If D does not explicitly implement I::f, it uses B::f as a default implementation.

Example

#using <mscorlib.dll>

using namespace System;

__gc __interface I { void f(); };

__gc struct B {

 virtual void f() { }

};

__gc struct D : B, I {

 // by default, D uses B::f to implement I::f

};

int main() {

 I* pI = new D; // ok: D is not abstract

 pI->f(); // ok: calls B::f (via default implementation)

}

A default implementation can also be used to implement ambiguous base interface methods (§6.1).

7 __gc Pointers

The common language runtime maintains a separate heap on which it implements a precise, asynchronous, compacting garbage collection scheme. To work correctly, it must track all storage locations that can point into this heap at runtime.

Since regular C++ pointers are impossible in general to track precisely, __gc pointers are introduced. They are the pointers whose variables are known to the common language runtime garbage collector. The rules for casting __gc pointers are much stricter than those of standard C++ pointers.

Note Unsafe pointer operations are very dangerous when using a compacting garbage collector scheme. A pointer that points to a random place in the common language runtime heap is far more likely to cause problems than a random pointer in the C++ runtime heap. The Managed Extensions are designed to protect the integrity of pointer types, in order to minimize heap failures.

The common C++ idiom of using a void* pointer to point to an arbitrary object is replaced by Object*, which can hold a pointer to an arbitrary __gc class.

Similarly System::Void * can be used to point to an arbitrary value class.

Characteristics
· The keywords __gc and __nogc can be used to explicitly specify whether a pointer can or cannot point into the common language runtime heap, respectively. They are left-modifiers, meaning they appear to the left of the pointer operator they modify. They are left-modifiers to avoid ambiguity with __gc applied to array brackets.

Example

#using <mscorlib.dll>

__value struct V { int i; };

__gc struct G { V v; };

int main() {

 G __gc* pG = new G; // pG can point into common language runtime heap

 V __gc* pV = &pG -> v; // pV can point into runtime heap

 V v;

 V __nogc* pV2 = & v; // pV2 cannot point into runtime heap

 int __gc* gcpi = & pV -> i; // gcpi can point into runtime heap

 int __nogc* pi = & pV2 -> i; // pi cannot point into runtime heap

};

· The compiler and runtime work together to zero-initialize all __gc pointers before the user program or garbage collector can access them. The user does not have to initialize them to zero.

· A __gc pointer to an object of __value class type can either point into the stack or into the common language runtime heap. The latter can occur if an object of a __value class object is embedded in an object of a __gc class.

Constraints

To achieve safety, certain restrictions apply to __gc pointers.

· A __gc pointer shall not be converted to a __nogc pointer of any type unless the __gc pointer is a pinning pointer (§7.7).

7.1 Pointer Defaults

In practice, explicit use of the __gc and __nogc pointer modifiers is almost never required because of the following rules.

Characteristics
· A pointer to a managed type is by default a __gc pointer.

· A pointer to an unmanaged type is by default a __nogc pointer.

Example

#using <mscorlib.dll>

using namespace System;

__gc struct G { int i; };

__value struct V { int i; };

int main() {

 G *pG; // implicit __gc pointer

 V *pV; // implicit __gc pointer

 Int32 *gcpi; // implicit __gc pointer

 int *pi; // implicit __nogc pointer

};

· A declaration of the form Value *...* v; defaults to Value __gc * __nogc * ... __nogc * v; where Value is any __value class.

· A declaration of the form Object ***...* o; defaults to Object __gc * __gc * __nogc * ... __nogc * o; where Object is any __gc class.

Example

#using <mscorlib.dll>

__gc struct G { int i; };

__value struct V { int i; };

int main() {

 // defaults to V __gc * __nogc * ppV;

 V ** ppV;

 // defaults to V __gc * __nogc * __nogc * pppV;

 V *** pppV;

 // defaults to G __gc * __gc * ppG;

 G ** ppG;

 // defaults to G __gc * __gc * __nogc * pppG;

 G *** pppG;

 // defaults to G __gc * __gc * __nogc * __nogc * ppppG;

 G **** ppppG;

}

7.2 Address-of and Managed Classes

Since a __value class can be allocated outside of the runtime heap, the address-of operator applied to an object of a __value class can yield either a __gc pointer or a __nogc pointer. The result depends on where the object is allocated.

Example

#using <mscorlib.dll>

__value struct V { int i; };

__gc struct G { V v; };

int main() {

 V v;

 G *pG = new G;

 V __nogc* npV;

 npV = &v; // ok: &v yields a __nogc pointer

 // npV = &(pG->v); // error: &(pG->v) yields a __gc pointer

 V *pV;

 pV = &(pG->v); // ok: pV is a __gc pointer

};

However, no matter where a __value class is allocated, a __gc pointer can be used to point to it. When the garbage collector runs, it will ignore any __gc pointers that dynamically point outside the runtime heap. This feature makes it possible to write a single function that can manipulate value classes that are allocated either inside or outside the runtime heap.

Example

#using <mscorlib.dll>

// unmanaged C++ class

struct S { int i; };

// managed class

__gc struct G { int i; };

// can update managed or unmanaged storage

void f(int __gc* pi) { *pi = 10; }

int main() {

 S *pS = new S; // C++ heap

 G *pG = new G; // common language runtime heap

 f(&pS->i);

 f(&pG->i);

};

This is captured by the following "__gc-adding" rule for pointers to value classes:

· Given value type V, there is an implicit conversion from V __nogc* to V __gc*.

Note that the inverse or "__gc-removing," is only allowed via pinning (§7.7). This is critical to the safety of the garbage collector.

A __gc adding rule is not permitted for pointers to __gc classes, because it would allow the creation of a __gc class object outside the common language runtime heap.

7.3 Address-of and Static Members

The address of a static C++ primitive type member yields a __nogc pointer.

The address of a static __value type member is a __gc pointer because __value type member is allocated on the runtime heap and can be moved by the garbage collector.

Example

#using <mscorlib.dll>

using namespace System;

__value struct V { int i; };

__gc struct G {

 static V v = {22};

 static int i = 23;

 static String* pS = S"hello";

};

int main() {

 // int *p0 = &G::v.i; // error: cannot convert int __gc* to int*

 int __gc*p1 = &G::v.i; // ok: value type variable may actually move

 int *p2 = &G::i; // ok: primitive type is fixed

 String * __gc* p3 = &G::pS; // ok

 Console::WriteLine(*p1);

 Console::WriteLine(*p2);

 Console::WriteLine(*p3);

}

Output

22

23

hello

7.4 Interior vs. Whole __gc Pointers

All __gc pointers can point into the common language runtime heap, but they are divided into two kinds:

· "Whole" __gc objects

· "Interior" __gc pointers

The second kind of __gc pointer points to __gc sub-objects or value class objects.

Example

#using <mscorlib.dll>

__gc struct G {

 int i;

 G* next;

};

void f() {

 // pG is a whole object pointer

 G *pG = new G;

 // ipi is an interior pointer

 int __gc* ipi = &(pG->i);

 // ppG is an interior pointer

 G** ppG = &(pG->next);

 // *ppG is a whole object pointer

 *ppG = new G;

};

Note that although variables with type "__gc pointer to __value class" point to a whole __value class, they are nevertheless considered interior pointers; any __value class on the runtime heap must be embedded within a __gc object.

Characteristics

· A "whole object" __gc pointer shall contain either the value 0 or a valid pointer into the common language runtime heap. If this condition is not met, the behavior is undefined.

· An "interior" __gc pointer can be incremented or decremented.

Constraints

· A "whole object" __gc pointer shall not be incremented or decremented.

· An interior pointer type shall only be used in the declaration of a local variable, function parameter, or function return type.

Example

#using <mscorlib.dll>

__gc struct G {

 int i;

 G* next;

};

__gc struct H {

 // int __gc* pi; // error: member of __gc class

};

// int __gc* gpi; // error: global variable

int * gnpi; // ok: not a __gc pointer

struct S {

 // int __gc* pi; // error: member of unmanaged class

};

int __gc* f(); // ok: function return type

void d(int __gc* ppi) { // ok: parameter type

 G *pG = new G;

 G** ppG = &(pG->next); // ok: local variable

};

G** d(G *pG) { // ok: function return type

 return (&pG->next);

};

· A __gc pointer shall not point to an interior __gc pointer.

Interior pointers require special handling by the garbage collector and therefore require more processing than pointers that point to "whole" objects. The common language runtime restricts the use of interior __gc pointers because of this expense.

Note that you can allocate value types that do not contain __gc pointers anywhere you can allocate a __nogc class. If one is allocated outside the runtime heap, it can be pointed to by a __nogc pointer.

Example

#using <mscorlib.dll>

using namespace System;

__value struct V { int i; };

V glob_v; // ok: V has no embedded __gc pointers

V __nogc* glob_pV = &glob_v; // ok: no __gc pointers involved

int main() {

 glob_pV->i = 10;

 Console::WriteLine(glob_v.i);

}

Output

10

7.5 Pointer Casts

It is extremely important for the garbage collector to track all pointers into the common language runtime heap during program execution. This leads to the following constraint on __gc pointer casts.

Constraint

· A __gc pointer shall not be cast to a __nogc pointer.

Example

#using <mscorlib.dll>

__gc struct G { int i; };

int main() {

 G *pG = new G;

 int *pi;

 pi = &pG->i; // C2440

 pi = (int*)&pG->i; // C2440

}

It is possible to convert a __gc pointer to a __nogc pointer via pinning (§7.7).

The Managed Extensions maintain the usual meanings of the various styles of C++ casts, limiting them somewhat to preserve the integrity of the common language runtime garbage collector. The following sections describe the impact on the Managed Extensions for each style of cast.

7.5.1 dynamic_cast

The use of dynamic_cast is prevalent in managed code. The common language runtime base class library uses the root Object* as the parameter type of many of its APIs and collections classes, which in turn requires clients to commonly convert from Object* to their intended class type.

The semantics of dynamic_cast on a __gc pointer is the same as for __nogc pointers, except that pointer to void is not allowed. If the cast is successful, the result is a pointer to the derived class object; otherwise the result is the value 0.

Example

#using <mscorlib.dll>

using namespace System;

__gc struct G { int i; };

int main() {

 Object *o = new G;

 if (G *pG = dynamic_cast<G*>(o)) {

 pG->i = 10;

 }

}

Constraint

· dynamic_cast shall not be used on value type pointers, including pointers of type Void *.

7.5.2 __try_cast

The Managed Extensions provide a new dynamically checked cast, similar to dynamic_cast, that throws an exception when the cast is unsuccessful:

__try_cast < type-id > (expression)

If a __try_cast fails at runtime, it will throw System::InvalidCastException.

Example

#using <mscorlib.dll>

__gc struct Base {};

__gc struct Derived : Base {};

__gc struct MoreDerived : Derived {};

int main() {

 Base*bp = new Derived;

 try {

 MoreDerived *mdp = __try_cast<MoreDerived*>(bp);

 }

 catch(System::InvalidCastException*) {

 System::Console::WriteLine("Could not cast 'bp' to MoreDerived*");

 }

}

Output

Could not cast 'bp' to MoreDerived*

Constraint

· __try_cast shall not be used on value type pointers including pointers of type Void *.

7.5.3 static_cast

In addition to performing ordinary arithmetic casts, the C++ static_cast is also used to convert a base class __gc pointer to a derived class __gc pointer without a runtime check.

Note Unchecked pointer casts can break the type safety of __gc pointers, and cause the garbage collector to fail. Static_cast between pointers should only be used for performance-critical code when you are absolutely certain that the types are right.

static_cast is commonly used in conjunction with collection classes that require casting all elements to Object* before adding them to the collection. If you only put certain types of objects into the collection, it is relatively safe to retrieve them using static_cast. Even so, use of __try_cast is recommend in test builds, with a switch to static_cast only for release builds.

Constraint

· Static_cast does not work on a pointer-to an object of a value class except for Void *.

7.5.4 reinterpret_cast

In C++, reinterpret_cast is used to cast between unrelated pointer types, and between pointers and integral types without a runtime check. Use of reinterpret_cast on __gc pointers is extremely discouraged, and should be limited to casting between pointers to simple class types that contain no embedded __gc pointers.

Note Since unchecked pointer casts can break the type safety of __gc pointers, reinterpret_cast between pointers should only be used when absolutely necessary.

Using reinterpret_cast is the only way to cast between pointers to value types other than Void *.

This cast must be used when casting between pointers and value types. There is no runtime type information associated with these pointers.

Example

#using <mscorlib.dll>

using namespace System;

public __value struct I { int i; };

public __value struct R { float f; };

int main() {

 R r = {2.17828f};

 System::Void* pV = &r; // implicit conversion from R * to Void *

 I *pI = reinterpret_cast<I*>(pV);

 System::Console::WriteLine(pI->i);

}

Output

1074489585

Constraint

Even reinterpret_cast must meet the constraint for __gc pointers.

· reinterpret_cast shall not be used to remove the __gc-ness of a __gc pointer, including conversion to integral types.

7.5.5 const_cast

const_cast is supported for __gc pointers, and has the usual C++ semantics.

7.5.6 C-Style Casts

In C++, a C-style cast can be used to perform the same conversions as static_cast, reinterpret_cast, and const_cast. Unfortunately, they make unsafe pointer casting difficult to detect using editing tools or manual scanning of source code. It is common for a C-style cast to silently result in a reinterpret_cast, when the user actually would have preferred a static_cast. Unsafe C-style casts are restricted as follows.

Characteristics

· C-style casts between unmanaged types are the same as in C++.

· A C-style cast that performs a base-class-to-derived-class pointer conversion will cause a level-1 warning, and the compiler will emit a __try_cast in its place, meaning the cast will cause a runtime exception if the cast-to-derived fails. This will expose unsafe casts at their origin, instead of causing the garbage collector to crash unpredictably.

Constraint

· A C-style cast shall not be used as a substitute for reinterpret_cast involving __gc pointers.

7.6 __gc Pointers and Overload Resolution

Unlike top-level const and volatile qualifiers, top-level __gc and __nogc modifiers are not ignored in parameter declarations. They are therefore significant for overload resolution.

Example

#using <mscorlib.dll>

void f(int *) {};

void f(int __gc*) {};

__gc struct G { int i; };

int main() {

 G *pG = new G;

 int i;

 f(&(pG->i)); // calls void f(int __gc*)

 f(&i); // calls void f(int *)

};

7.7 Pinning Pointers

An object or sub-object of a managed class can be pinned, in which case the common language runtime will not move it during garbage collection. The principal use of this is to pass a pointer to managed data as an actual parameter of an unmanaged function call.

A local variable called a pinning pointer can be declared whose top-level pointer type is qualified by the __pin keyword. During a collection cycle, the runtime will inspect the metadata created for the pinning pointer and will not move the item it points to.

Example

#using <mscorlib.dll>

#include <iostream>

__gc class G {

public:

 int i;

 G() { i = 0; };

};

class H {

public:

 void incr(int * i) { // unmanaged function

 (*i)++;

 std::cout << *i << std::endl;

 };

};

int main() {

 G __pin * pG = new G; // pG is a pinning pointer

 H * h = new H;

 h->incr(& pG -> i); // pointer to managed data passed as actual

 // parameter of unmanaged function call

}

Output

1

A pinned object is pinned only while a pinning pointer points to it. It is no longer pinned when its pinning pointer goes out of scope, or is set to 0 in the program. After that, any unmanaged pointers that remain pointing to that object must not be dereferenced. An unpinned item can be moved in the heap by the garbage collector. Any __nogc pointers that still point to it will not be updated, and dereferencing one of them could raise an unrecoverable exception.

Example

#using <mscorlib.dll>

__gc class G {

public:

 int i;

};

void f(G * pG) {

 G __pin* ppG = pG;

 // the object pointed to by pG is pinned until the pinning

 // variable ppG goes out of scope,

 ppG = 0; // or is set to 0

}

A pinning pointer is volatile by default. It is redundant but not an error if the user declares a pinning pointer to be volatile. This prevents the optimizer from deleting an assignment of 0 to a pinning pointer in the source code, even though the assignment appears to be dead code.

Pinning a sub-object defined in a managed object has the effect of pinning the entire object. For example, if any element of an array is pinned, then the whole array is also pinned. There are no extensions to the language for declaring a pinned array. To pin an array, declare a pinning pointer to its element type, and pin one of its elements.

Example

#using <mscorlib.dll>

#include <stdio.h>

using namespace System;

int main() {

 Byte arr[] = new Byte[4]; // arr is a managed array

 arr[0] = 'C';

 arr[1] = '+';

 arr[2] = '+';

 arr[3] = '0';

 Byte __pin * p = &arr[1]; // entire array is now pinned

 unsigned char * cp = p;

 printf("%s\n", cp); // bytes pointed at by cp will not move during call

}

Output

++0

Characteristics

· A pinning pointer can be implicitly converted to a __nogc pointer.

This is the only mechanism provided for passing addresses in the common language runtime heap to functions expecting __nogc pointers. The primary use for this is passing such addresses to unmanaged functions in external DLLs.

Constraints

· A pinning variable shall be a nonstatic local variable.

Except for its pinning properties, a pinning pointer is identical to a __gc pointer.

· Two function overloads shall not differ only by the use of pin and __gc pointer types.

· A pinning pointer type shall not be used in a cast expression. It can only be used to declare a variable.

Example

#using <mscorlib.dll>

using namespace System;

__gc struct G { int i; };

int main() {

 Object *o = new G;

 if (G __pin *pG = dynamic_cast<G __pin *>(o)) { // C3834

 pG->i = 10;

 }

}

· A pinning pointer can be implicitly converted to a __gc pointer.

Example

#using <mscorlib.dll>

__gc class G {

public:

 int i;

};

void f(G * pG) {

 G __pin * ppG = pG;

 G * pG2 = ppG; // ok

};

· A __nogc pointer can be converted to a pinning pointer only if the pinning pointer is an interior __gc pointer.

Example

#using <mscorlib.dll>

struct G { int i; };

__gc struct H { int j; };

int main() {

 G * g = new G; // g is a __nogc whole object pointer

 H * h = new H;

 int __pin * k = & h -> j; // k is a pinning interior __gc pointer

 int * l = & g -> i; // l is a __nogc pointer

 k = l; // ok

};

7.8 Direct Access to Characters

Managed Extensions allows direct access to the characters of a String object for high-performance calls to unmanaged functions that take wchar_t* strings. The method yields an interior __gc pointer to the first character of the String object. This pointer can be manipulated directly or can be pinned and passed to a function expecting an ordinary wchar_t string.

Example

#using <mscorlib.dll>

#include <string.h>

#include <vcclr.h>

using namespace System;

size_t getlen(String *s) {

 // make sure it doesn't move during the unmanaged call

 const wchar_t __pin* pinchars = PtrToStringChars(s);

 return wcslen(pinchars);

};

Note String objects are immutable and cannot be modified.

7.9 __gc Pointer-to-Members

C++ pointer-to-members are not supported for managed classes. The common language runtime provides delegates (§9) for storing bound pointers to managed methods.

8 __gc References

A __gc reference is similar to a C++ reference, except that the referenced object can be moved during execution by the garbage collector.

Example

#using <mscorlib.dll>

__gc class G {

public:

 int i;

};

int main() {

 G & g = *(new G);

 g.i = 10;

 System::Console::WriteLine(g.i);

}

Output

10

Characteristics
· The address of a __gc reference is a __gc pointer.

Example

#using <mscorlib.dll>

__value struct G { int i; };

int main() {

 G g;

 G & v = g;

 v.i = 4;

 G __gc * p = & g; // __gc is optional

 p -> i = 6;

 System::Console::WriteLine(v.i);

}
Output

6

Where convenient, __gc references can be used instead of __gc pointers. Every __gc reference abides by all C++ rules for references. The default rules for the __gc and __nogc keywords on references are the same as for pointers: the reference is __gc whenever the modified type is managed.

Example

#using <mscorlib.dll>

__value struct V { int i; };

__gc struct G { int i; };

void f(V & w) { // __gc reference by default

 w.i = 10;

};

void f(G & h) { // __gc reference by default

 h.i = 20;

};

int main() {

 V v;

 G * pG = new G;

 f(v); //call f by reference

 System::Console::WriteLine(v.i);

 f(*pG); //call the other f by reference

 System::Console::WriteLine(pG->i);

}

Output

10

20

9 Delegates

Delegates provide the underlying mechanism for events in the common language runtime component model. This section describes the user model of delegates. For greater detail, see §10.5 of Common Language Infrastructure, Part 2: General
.

Delegates are multicast: the "function pointer" can be bound to one or more methods. Managed Extensions supports delegates by adding the __delegate keyword. The __delegate keyword defines a multicast delegate type with a specific method signature.

The following example declares two delegates.

Example

__delegate int GetDayOfWeek();

private __delegate void DayOfWeekChanged();

The following example demonstrates using the above declaration and illustrates that the delegate is actually a class, and the constructor call has an object and a pointer-to a member function as arguments.

Example

#using <mscorlib.dll>

__delegate int GetDayOfWeek(); // delegate declaration

__gc class MyCalendar {

public:

 int MyGetDayOfWeek() {

 int Day = 0;

 // implementation ...

 return Day;

 }

};

int main() {

 MyCalendar * pcal = new MyCalendar;

 // delegate instantiation

 GetDayOfWeek * pGetDayOfWeek =

 new GetDayOfWeek(pcal, &MyCalendar::MyGetDayOfWeek);

 int dayOfWeek = pGetDayOfWeek->Invoke();

}

Characteristics
· The programmer can prefix a declaration of a delegate by a class-visibility-specifier: public or private. If it is omitted, it has the same effect as if private had been used. The same rules for visibility of classes apply to delegates. See §21.1 for more details.

· The return type of a delegate can be any managed type. For interoperability reasons, it is recommended that the return type of a delegate be a CLS type.

· A delegate declaration can have parameters that are interior __gc pointers (§7.4).

· When a delegate is invoked, its member functions are called in the order they were attached.

· The return value of a delegate is the return value from its last attached member function.

· A delegate can be a proxy for an unmanaged pointer to a C++ member function provided that the member function is defined in a native DLL and used in the Managed Extensions application via P/Invoke.

Example

#using <mscorlib.dll>

#include <stdio.h>

__gc struct S {

 // imported via P/Invoke

 [System::Runtime::InteropServices::DllImport("msvcrt",

 CharSet=System::Runtime::InteropServices::CharSet::Ansi)]

 static int puts(const char * str);

};

// delegate declaration

__delegate int MyPuts(const char * str);

int main() {

 MyPuts * myp = new MyPuts(0, &S::puts);

 const char * pText = "Hello, World!";

 myp(pText); // invoke function via delegate myp

}

Constraints

· Delegates shall not be overloaded.

Example

__delegate void f(int);

__delegate void f(String*); // error: attempt to overload delegate

· The first argument of a delegate instantiation shall be an object reference.

· The second argument of a delegate instantiation shall either be a pointer to a method of a __gc class object, or a pointer to a method of a __value struct object. The __value struct's declaration must derive from a __gc interface and the method must implement a method of the __gc interface.

· When the second argument of a delegate instantiation is a pointer to a static member function, the first argument of a delegate instantiation shall be a null object reference, that is, 0.

· When the second argument of a delegate instantiation is a pointer to a non-static method, the first argument shall be a non-null object reference.

Example

#using <mscorlib.dll>

using namespace System;

// delegate definition

__delegate void Shout(String *message);

// define a class implementing Shout methods

__gc class Speaker {

public:

 void Shout(String *pMessage) {

 Console::Write(S"[");

 Console::Write(pMessage);

 Console::WriteLine(S"]");

 };

 static void GlobalShout(String *pMessage) {

 Console::Write(S"{");

 Console::Write(pMessage);

 Console::WriteLine(S"}");

 }

};

int main() {

 Speaker * pSpk = new Speaker();

 // delegate instantiations

 Shout * pShout1 = new Shout(pSpk, &Speaker::Shout);

 Shout * pShout2 = new Shout(0, &Speaker::GlobalShout);

 // invoking the calls

 pShout1->Invoke(S"Delegates");

 pShout2->Invoke(S"are cool.");

}

Output

[Delegates]

{are cool.}

10 Events

The common language runtime supports the publish-subscribe events model. An event source can notify one or more subscribed recipients of an event that has occurred.

The event mechanism is built upon common language runtime multicast delegates and describes events via metadata. The event metadata describes:

· The event type.

· Events raised by classes.

· Methods of a class that add or remove an event handler.

Common language runtime events are based on delegates.

This example describes common language runtime events.

Example

#using <mscorlib.dll>

using namespace System;

__delegate void ClickEventHandler(int, double);

__delegate void DblClickEventHandler(String*);

__gc class EventSource {

public:

 __event ClickEventHandler* OnClick; // declare the event OnClick

 __event DblClickEventHandler* OnDblClick; // declare OnDblClick

 void FireEvents() {

 OnClick(7, 3.14159);

 OnDblClick("Hello");

 }

};

The compiler will generate code that is essentially equivalent to:

#using <mscorlib.dll>

using namespace System;

__delegate void ClickEventHandler(int, double);

__delegate void DblClickEventHandler(String*);

__gc class EventSource {

private:

 ClickEventHandler* OnClick;

 DblClickEventHandler* OnDblClick;

public:

 // subscribe to OnClick

 __event void add_OnClick(ClickEventHandler* eh) {

 OnClick = static_cast<ClickEventHandler *> (Delegate::Combine(eh, OnClick));

 }

 // unsubscribe to OnClick

 __event void remove_OnClick(ClickEventHandler* eh) {

 OnClick = static_cast<ClickEventHandler *> (Delegate::Remove(eh, OnClick));

 }

 // subscribe

 __event void add_OnDblClick(DblClickEventHandler* eh) {

 OnDblClick = static_cast<DblClickEventHandler *> (Delegate::Combine(OnDblClick, eh));

 }

 // unsubscribe

 __event void remove_OnDblClick(DblClickEventHandler* eh) {

 OnDblClick = static_cast<DblClickEventHandler *> (Delegate::Remove(OnDblClick, eh));

 }

protected: // prevent external invocations of raise

 // generate notification

 void raise_OnClick(int x, double y) {

 if (OnClick)

 OnClick->Invoke(x, y);

 }

 void raise_OnDblClick(String* s) {

 if (OnDblClick)

 OnDblClick->Invoke(s);

 }

 void FireEvents() {

 raise_OnClick(7, 3.14159);

 raise_OnDblClick("Hello");

 }

 EventSource() {

 OnClick = 0;

 OnDblClick = 0;

 }

};

Characteristics

· The accessibility of a generated raise method is never public.

· The raise method generated for an event is protected by default. It is private if the event is declared to be private.

· The raise method generated for an event is virtual only if the event is declared to be virtual.

· If an event is declared in a __gc interface (§6), associated add and remove methods only are generated.

Example

#using <mscorlib.dll>

__delegate int Del(int, float);

__gc __interface I {

public:

 __event Del *E;

};

is converted to

__gc __interface I {

__event void add_E(Del*);

__event void remove_E(Del*);

// No raise method is generated

};

The user can override any of the default accessibilities of add, remove, and raise. This is achieved by omitting the declaration of the event, and explicitly declaring add, remove, and raise. In the example below, these three methods are declared.

Example

#using <mscorlib.dll>

public __delegate void f(int);

public __gc struct E {

 f* _E;

public:

 void handler(int i) { System::Console::WriteLine(i); }

 E() { _E = 0; }

 __event void add_E1(f* d) { _E += d; }

 static void Go() {

 E* pE = new E;

 pE->E1 += new f(pE, &E::handler);

 pE->E1(17); // prints 17

 pE->E1 -= new f(pE, &E::handler);

 pE->E1(17); // no output

 }

private:

 __event void raise_E1(int i) {

 if (_E)

 _E(i);

 }

protected:

 __event void remove_E1(f* d) {

 _E -= d;

 }

};

int main() {

 E::Go();

}

Output

17

The user can also define a public method that calls raise.

Example

#using <mscorlib.dll>

using namespace System;

__delegate void f(int);

__gc struct E {

public:

 __event f * E1;

 void fire_tag_E1(int idx) {

 E1(idx); // calls raise_E1(idx)

 };

};

Client code can use the operator overloads to add handlers to the event queue.

Example

#using <mscorlib.dll>

using namespace System;

#include <stdio.h>

__delegate void ClickEventHandler(int, double);

__delegate void DblClickEventHandler(String*);

__gc class EventSource {

public:

 __event ClickEventHandler* OnClick;

 __event DblClickEventHandler* OnDblClick;

 void FireEvents() {

 OnClick(7, 3.14159);

 OnDblClick(S"Started");

 }

};

__gc struct EventReceiver {

public:

 void Handler1(int x, double y) {

 printf("Click(x=%d,y=%lf)\n", x, y);

 };

 void Handler2(String* s) {

 printf("DblClick(s=%s)\n", s->ToCharArray());

 }

 void Handler3(String* s) {

 printf("DblClickAgain(s=%s)\n", s->ToCharArray());

 }

 void AddHandlers(EventSource* pES) {

 pES->OnClick +=

 new ClickEventHandler(this,&EventReceiver::Handler1);

 pES->OnDblClick +=

 new DblClickEventHandler(this,&EventReceiver::Handler2);

 pES->OnDblClick +=

 new DblClickEventHandler(this, &EventReceiver::Handler3);

 }

 void RemoveHandlers(EventSource* pES) {

 pES->OnClick -=

 new ClickEventHandler(this, &EventReceiver::Handler1);

 pES->OnDblClick -=

 new DblClickEventHandler(this, &EventReceiver::Handler2);

 pES->OnDblClick -=

 new DblClickEventHandler(this, &EventReceiver::Handler3);

 }

};

int main() {

 EventSource* pES = new EventSource;

 EventReceiver* pER = new EventReceiver;

 // add handlers

 pER->AddHandlers(pES);

 pES->FireEvents();

 // remove handlers

 pER->RemoveHandlers(pES);

}

Output

Click(x=7,y=3.141590)

DblClick(s=Started)

DblClickAgain(s=Started)

11 System::String

The compiler recognizes the common language base class System::String as special in the following ways.

11.1 C++ String Literals

An implicit conversion exists between an ordinary C++ string literal (with or without the L prefix) and a variable of type System::String.

Example

#using <mscorlib.dll>

using System::String;

int main() {

 String *s1 = "a string literal";

 String *s2 = L"a wide string literal";

};

11.2 Runtime String Literals

The Managed Extensions include a new string literal with the 'S' prefix.

Example

#using <mscorlib.dll>

using System::String;

int main() {

 String *s1 = S"a common language runtime string literal";

};

An S string literal has type System::String* and has better performance in managed code than C++ string literals. Moreover, all instances of identical S string literals always point to the same object, which is not true for String* objects that are constructed from C++ string literals.

Example

#using <mscorlib.dll>

using namespace System;

bool f(String *parm_s) {

 String *loc_s = S"a common language runtime string literal";

 return parm_s == loc_s; // pointer identity

};

int main() {

 String *s = S"a common language runtime string literal";

 String * s1 = L"a common language runtime string literal";

 if (f(s))

 Console::WriteLine(S"Matches");

 else

 Console::WriteLine(S"Does not match");

 if (f(s1))

 Console::WriteLine(S"Matches");

 else

 Console::WriteLine(S"Does not match");

};

Output

Matches

Does not match

11.2.1 String Concatenation and Output

Many runtime types provide output conversions to type String with the ToString method. All C++ primitive types are mapped to runtime types that contain the ToString method.

Example

#using <mscorlib.dll>

using namespace System;

int main() {

 int i = 10;

 Console::WriteLine(S"i = {0}", i.ToString());

}

Output

i = 10

The use of ToString makes explicit boxing unnecessary, and is faster as a result. The following equivalent example uses explicit boxing.

Example

#using <mscorlib.dll>

using namespace System;

int main() {

 int i = 10;

 Console::WriteLine(String::Format(S"i = {0}", __box(i)));

}

Output

i = 10

String literals can be concatenated by using String::Concat.
Example

#using <mscorlib.dll>

using namespace System;

int main() {

 int i = 10, j = 20;

 Console::WriteLine(String::Concat(i.ToString(),

 S" + ", j.ToString(),

 S" = ", (i + j).ToString())

);

}

Output

10 + 20 = 30

The same result can be achieved more conveniently.

Example

#using <mscorlib.dll>

using namespace System;

int main() {

 int i = 10, j = 20;

 String * sa[] = { i.ToString(), S" + ",

 j.ToString(),

 S" = ", (i + j).ToString()

 };

 Console::WriteLine(String::Concat(sa));

}

Output

10 + 20 = 30

12 __value Enums

Characteristics
A __value enum is similar to an ordinary C++ enumerated type except for the following:

· A __value enum can specify an underlying type.

· By default pointer-to rules, a pointer-to a __value enum type is a __gc pointer.

· A __value enum name can conflict with another name in the same scope without error. See the first example in §12.1.

· A __value enum has metadata emitted that describes its type and all of its members.

· A __value enum can be declared in a __gc interface.

Any enum declared with the __value class key modifier is a __value enum.
Example

__value enum Color {red, green, blue};
The compiler does not use context to determine whether an enum is managed. The following constraint prevents possible confusion.

Constraint

· An enum declared within a __gc class, __gc struct, __value class, or __value struct shall specify the __value class-key modifier.

Example

#using <mscorlib.dll>

__gc struct G {

 enum Color {red, green, blue}; // C3277

 __value enum Weekend { Sunday, Saturday }; // OK

};

12.1 Weak Enumerator Names

In C++, enumerator declarations are promoted to the same scope as the enumerated type definition that contains them. If two enumerated type definitions in the same scope contain an enumerator with the same identifier, it is an error. This can cause problems if a programmer wishes to make use of many different namespaces from a variety of vendors. To remedy this, the notion of weak enumerator names is introduced.
Characteristics
To accommodate weak enumerator names, the following simple rule is used to resolve an ambiguous lookup result.

· In the case of ambiguity, if exactly one of the matching declarations is not a weak enumerator name, there is no error. The single non-weak declaration is chosen as the match for the lookup.

Example

#using <mscorlib.dll>

__value enum Color {salmon, silver, cyan};

__value enum Fish {snapper, salmon};

int salmon; // non-weak declaration

int main() {

 return salmon; // unambiguous: exactly one non-weak declaration

}

Example

#using <mscorlib.dll>

__value enum Color {salmon, silver, cyan};

__value enum Fish {snapper, salmon};

int main() {

 Fish f = snapper; // unambiguous: one (weak) declaration found

 Color c = salmon; // C3275 : two weak declarations found

}

12.2 Enumerator Qualification

To disambiguate ambiguous references to weak enumerator names, the Managed Extensions allow an enumerator name to be qualified by the parent __value enum name.

Example

#using <mscorlib.dll>

__value enum Color {salmon, silver, cyan};

__value enum Fish {snapper, salmon};

int main() {

 Color c = Color::salmon;

 Fish f = Fish::salmon;

 c = silver;

 f = snapper;

}

12.3 Underlying Type

Managed Extensions allow the user to specify the underlying type of a __value enum.

Constraint

· The underlying type of a __value enum shall be an integral C++ type or its corresponding common language runtime value type (§5.1).

Example

__gc class M {

 __value enum Color : unsigned char { red, yellow, green };

 __value enum Fish : System::Byte { snapper, salmon, flounder };

};

The type of a __value enum is distinct from its underlying type.

Example

__gc class M {

 __value enum Color : System::Byte { red, yellow, green };

 void f(Color) { };

 void f(System::Byte) {} // can overload on underlying type

};

12.4 Boxed enums and System::Enum

A __value enum is a value type and therefore can be boxed. A boxed __value enum implicitly inherits from System::Enum which inherits from System::ValueType.

13 Properties

The Managed Extensions provide a mechanism to write and import a class that contains a common language runtime property. To client code, a property has the appearance of an ordinary data member, and can be written to or read from using the same syntax as a data member. However, instead of declaring a data member, the user declares get and set methods which implement the property, and the compiler injects a pseudo data member which corresponds to the property methods.

Example

#using <mscorlib.dll>

__gc struct G {

 __property int get_Size() { return 0; };

 __property void set_Size(int i) { };

 // int Size; compiler generated pseudo member

};

int main() {

 G * pG = new G;

 pG->Size = 10; // calls set_Size

 int i = pG->Size; // calls get_Size

}

Characteristics
· The __property keyword is used to distinguish a property method from an ordinary method.

· The name of the get method and the set method are the same except for the prefix.

· The get and set methods need not agree on the virtual function-specifier.

· The accessibility of the get and set method can differ.

· It is not necessary for a property to have both a get and a set method.

· A property can be made pure virtual using the =0 syntax similar to an ordinary method.

· The definition of a property method can appear outside the class body similar to an ordinary method.

Constraints

Some restrictions apply for managed properties.

· A property shall be declared using the __property keyword.

· In a managed class, any member whose identifier follows the common language runtime property naming convention of get_ or set_ shall define either a get or a set property method.

· The get and the set method for a property shall agree on the static storage-class-specifier.

13.1 Scalar Properties

A property is scalar if its get and set methods fit the following description.

Characteristics
· The get method has no parameters, and has return type T.

· The set method has a single parameter of type T, and void return type.

Constraint

· There shall be only one scalar property declared in a single scope with the same identifier. Scalar properties cannot be overloaded.

13.2 Indexed Properties

A property is indexed if its get and set methods fit the following description.

· The get method has parameter tuple (T1, ..., TN), and has return type TR which can be any type.

· The set method has parameter tuple (T1, ..., TN , TR) and void return type.

Given indexed property methods, a pseudo member array is injected with the following form (assuming property name F):

/* TR F[T1, ... ,TN]; */ // compiler generated pseudo member
/* TR F[T1] ... [TN]; */ // compiler generated pseudo member
A property provides array-like access to the pseudo member. However, because it is implemented using method calls, any parameter type can be used to index the pseudo member array.

Example

#using <mscorlib.dll>

using namespace System;

__gc class Employee {

public:

 Employee(String * s, int d) {

 _name = s;

 _dept = d;

 };

 __property String * get_name() { return _name; }

 __property int get_dept() { return _dept; }

private:

 String * _name;

 int _dept;

};

__gc class Manager {

public:

 __property Employee * get_Report(String * s) {

 for (pEmp = Reports ; pEmp && (pEmp -> emp -> name != s)

 ;

 pEmp = pEmp -> next);

 if (pEmp)

 return pEmp -> emp;

 else

 return 0;

 }

 __property void set_Report(String* s, Employee* e) {

 for (pEmp = Reports ; pEmp && (pEmp -> emp -> name != s)

 ;

 pEmp = pEmp -> next);

 if (!pEmp) {

 EmpList * emp1 = new EmpList;

 emp1 -> emp = e;

 emp1 -> next = Reports;

 Reports = emp1;

 }

 }

private:

 __gc struct EmpList {

 Employee * emp;

 EmpList * next;

 };

 EmpList * pEmp;

 static EmpList * Reports = 0;

};

/* Employee* Report[String*]; */ // pseudo array member

int main() {

 Manager* Ed = new Manager;

 Employee* Bob = new Employee(S"Bob Smith", 12);

 Employee* Gus = new Employee(S"Gus Jones", 18);

 // track Ed's reports

 Ed->Report[Bob->name] = Bob; // indexed by String* type

 Ed->Report[Gus->name] = Gus; // indexed by String* type

 Console::WriteLine(Ed->Report[Bob->name]->dept);

}

Output

12

The pseudo member array is indexed in a similar way to a C++ array.

Example

#using <mscorlib.dll>

using namespace System;

public __gc

class X {

public:

 __property int get_Prop(int i, int j) {

 return m_val - i - j;

 }

 __property void set_Prop(int i, int j, int value) {

 m_val = value + i + j;

 }

 int m_val;

};

int main() {

 X* x = new X;

 x->Prop[1][2] = 3;

 Console::WriteLine(x->Prop[1][2]);

}

Output

3

An indexed property can be overloaded like any normal member function.

Example

#using <mscorlib.dll>

using namespace System;

__gc class PhoneNumber {

public:

 PhoneNumber(int AreaCode, int ThreeDigits, int FourDigits) {

 _AreaCode = AreaCode;

 _ThreeDigits = ThreeDigits;

 _FourDigits = FourDigits;

 }

private:

 int _AreaCode;

 int _ThreeDigits;

 int _FourDigits;

};

__gc class Employee {

public:

 Employee(String * s, PhoneNumber * p) {

 _name = s;

 _phonenumber = p;

 };

 __property String * get_name() { return _name; }

 __property PhoneNumber * get_number() { return _phonenumber; }

protected:

 String * _name;

 PhoneNumber * _phonenumber;

};

__gc class Manager {

public:

 __property Employee * get_Report(String * s) {

 for (pEmp = Reports ; pEmp && (pEmp -> emp -> name != s)

 ;

 pEmp = pEmp -> next);

 if (pEmp)

 return pEmp -> emp;

 else

 return 0;

 }

 __property Employee * get_Report(PhoneNumber * p) {

 for (pEmp = Reports ; pEmp && (pEmp -> emp -> number != p)

 ;

 pEmp = pEmp -> next);

 if (pEmp)

 return pEmp -> emp;

 else

 return 0;

 }

 __property void set_Report(String* s, Employee* e) {

 for (pEmp = Reports ; pEmp && (pEmp -> emp -> name != s)

 ;

 pEmp = pEmp -> next);

 if (!pEmp)

 {

 EmpList * emp1 = new EmpList;

 emp1 -> emp = e;

 emp1 -> next = Reports;

 Reports = emp1;

 }

 }

 /* Employee* Report[String*]; */ // pseudo array member

 __property void set_Report(PhoneNumber * p, Employee* e) {

 for (pEmp = Reports ; pEmp && (pEmp -> emp -> number != p)

 ;

 pEmp = pEmp -> next);

 if (!pEmp) {

 EmpList * emp1 = new EmpList;

 emp1 -> emp = e;

 emp1 -> next = Reports;

 Reports = emp1;

 }

 };

private:

 __gc struct EmpList {

 Employee * emp;

 EmpList * next;

 };

 EmpList * pEmp;

 static EmpList * Reports = 0;

};

int main() {

 Manager* Ed = new Manager;

 PhoneNumber * p1 = new PhoneNumber(425, 555, 1111);

 PhoneNumber * p2 = new PhoneNumber(206, 555, 1111);

 Employee* Bob = new Employee(S"Bob Smith", p1);

 Employee* Gus = new Employee(S"Gus Jones", p2);

 // track Ed's reports

 Ed->Report[Bob->name] = Bob; // indexed by String*

 Ed->Report[Gus->number] = Gus; // indexed by PhoneNumber*

 Console::WriteLine(Ed->Report[Bob->number] -> name);

}

Output

Bob Smith

13.3 Injected Pseudo-Member

As described in Section 13 above, the compiler will inject a pseudo data member in a class whenever a property method is declared. This pseudo member can be referenced in the source as if it were an actual data member of the containing class.

When the pseudo member is referenced in the user source as a lvalue, the reference will be replaced with a call to the set method. When referenced as a rvalue, the reference will be replaced with a call to the get method.

Constraints

Some constraints apply for the pseudo member.

· An injected pseudo member shall not have its address taken.

Example

#using <mscorlib.dll>

__gc __interface IFC {

 __property int get_Size();

 __property void set_Size(int i);

};

int g(IFC *pI) {

 int __gc* pi = &pI->Size; // C2102

};

· A single instance of an injected pseudo member shall not be both an rvalue and a lvalue.

Example

#using <mscorlib.dll>

__gc __interface IFC {

 __property int get_Size();

 __property void set_Size(int i);

};

int g(IFC *pI) { int i = pI->Size = 10; } // C2440

13.4 Preventing Ambiguity of Array and Indexed Properties

It is possible to declare a property with an array type.

Example

#using <mscorlib.dll>

__gc struct G {

public:

 int i;

 __property int get_ArrayProp() __gc[] { return m_array; }

 G() { m_array = new int __gc[100]; }

private:

 int m_array __gc[];

};

int main() {

 G * pG = new G;

 for (int i = 0 ; i < 100 ; ++i)

 pG->ArrayProp[i] = i;

}

Accessing a property with array type is identical to accessing an indexed property.

Example

#using <mscorlib.dll>

__gc struct G {

public:

 int i;

 __property int get_ArrayProp(int i) { return m_array[i]; };

 __property void set_ArrayProp(int i, int v) { m_array[i] = v; };

 G() { m_array = new int __gc[100]; }

private:

 int m_array __gc[];

};

int main() {

 G * pG = new G;

 for (int i = 0 ; i < 100 ; ++i)

 pG->ArrayProp[i] = i;

}

Similarly, ambiguity occurs between an indexed property and a property returning a pointer that can also be accessed via subscripting. The following restriction avoids both of these forms of ambiguity.

Constraint

· An array property declaration or a property returning a pointer shall not overload an indexed property.

Example

__gc struct G {

 int i;

 __property int get_ArrayProp(int);

 __property int get_ArrayProp() __gc[]; // error
 __property int* get_ArrayProp(); // error
};

14 Exception Handling

The Managed Extensions extend the C++ exception handling mechanism to allow catching an exception that is a pointer to a managed type. The class System::Exception provides many useful methods for processing managed exceptions, and is the recommended base class for user-defined exception classes.

14.1 throw

The C++ throw expression is extended to throw a pointer to a __gc class.

Example

#using <mscorlib.dll>

__gc struct G : System::Exception { int i; };

void f() {

 G * pG = new G;

 throw pG;

}

It follows that a value class can only be thrown when boxed.

14.2 try/catch

A single C++ try/catch block can be used to catch both managed and unmanaged exceptions.

Example

#using <mscorlib.dll>

using namespace System;

__gc struct G : System::Exception { int i; };

struct Cclass { double d; };

void f() { G * pG = new G; pG->i = 11; throw pG; };

void g() {

 Cclass c = {2.0};

 throw c;

};

int main() {

 for (int i = 2 ; i > 0 ; --i) {

 try {

 if (i == 1)

 f();

 if (i == 2)

 g();

 }

 catch(Cclass& catchC) {

 Console::WriteLine(catchC.d);

 }

 catch(G* catchG) {

 Console::WriteLine(catchG->i);

 }

 }

}

Output

2

11

As usual, unwinding occurs for any C++ objects with destructors that are on the runtime stack between the throwing function and the handling function. Since __gc classes are allocated on the heap, unwinding does not apply to them.

Constraint

· The result object of a catch clause or throw statement shall not be an unboxed value type.

Example

#using <mscorlib.dll>

__value struct V { int i; };

void f() {

 V v = {9};

 throw v; // C2715 cannot throw unboxed value type

};

void g() {

 V v = {11};

 throw __box(v); // ok

};

int main() {

 try {

 g();

 }

 catch(__box V * pbV) {

 System::Console::WriteLine(pbV -> I);

 }

}

14.3 __finally Keyword

In addition to try/catch, the Managed Extensions support a __finally clause. The semantics are identical to the __finally block in Structured Exception Handling (SEH). A __finally block can follow a try or catch block.

Example

#using <mscorlib.dll>

__gc class MyException : public System::Exception {

};

void f() {

 throw new MyException;

}

int main() {

 try {

 f();

 }

 catch (MyException *e) {

 System::Console::WriteLine("in catch");

 System::Console::WriteLine(e->GetType());

 }

 __finally {

 System::Console::WriteLine("in finally");

 }

}

Output

in catch

MyException

in finally

14.4 Unwinding

The order of events for a thrown exception is as follows:

1. The runtime walks the stack looking for the appropriate catch clause, or in the case of SEH, an except filter for SEH, to catch the exception. Catch clauses are searched first in lexical order, and then dynamically down the call stack.

2. Once the correct handler is found, the stack is unwound to that point. For each function call on the stack, its local objects are destructed and __finally blocks are executed, from most nested outward.

3. Once the stack is unwound, the catch clause is executed.

14.5 Catching Unmanaged C++ Exceptions

When an unmanaged C++ object of type U is thrown, it is "wrapped" with a common language runtime exception of type

System::Runtime::InteropServices::SEHException

When searching for the appropriate catch clause, if the type of the catch clause is an unmanaged C++ type, the thrown object is unwrapped and compared to the unmanaged C++ type. This enables an unmanaged C++ exception to be caught in the normal way.

However, if a catch clause of type SEHException or any of its base classes comes first, it will intercept the exception. It is therefore advisable to place all catch clauses that catch unmanaged C++ exceptions before any catch clauses of managed exceptions.

Note that

catch(Object*)

and

catch(...)

will both catch any thrown type including SEH exceptions.

If an unmanaged type is caught by catch(Object*), it will not destroy the thrown object.

When throwing or catching unmanaged C++ exceptions, one of the C++ exception handling compiler options must be used: /GX, /EHs, or /Eha.

15 Nested Classes

Managed classes can be nested.

Example

__gc class Outer {

 __gc class Inner {};

};

Constraints

· A nested class shall not specify a class-visibility-specifier. Its accessibility is specified by the surrounding member visibility (§21.2) access-specifier.

Example

__gc class Outer {

public:

 __gc class Inner1 {}; // ok: Inner2 has public visibility
 private __gc class Inner2 {}; // error
private:

 __gc class Inner3 {}; // ok: Inner3 has private visibility
};

· If a nested __gc class inherits from its parent class, it shall be defined out of line.

Example

#using <mscorlib.dll>

__gc class Outer {

public:

 __gc class Inner; // forward declaration

 int i;

 Inner *pInner;

};

__gc class Outer::Inner : public Outer {

 void f() { System::Console::WriteLine(i); }

};

· A nested class shall specify the __value, __gc, or __nogc class-key modifier.

Example

#using <mscorlib.dll>

__gc class Outer {

public:

 // class Inner1 {}; // error
 __gc class Inner2 {}; // ok
 __nogc class Inner3 {}; // ok
 __value class Inner4 {}; // ok
};

· A nested class or struct has access to the private members of its enclosing classes.

Example

#using <mscorlib.dll>

class C {

private:

 static int i;

public:

 class inner {

 public:

 int f() {

 return C::i;

 }

 };

};

This constraint does not conform to the current C++ ISO Standard
 but it conforms to the next version of the Standard. This change does not affect code that conforms to the current standard.

16 Mixing Managed and Unmanaged Classes

There are three ways in which managed classes can be mixed with unmanaged classes as described in the following three sections.

16.1 Unmanaged Classes Embedded in Managed Classes

An unmanaged class can be an embedded class of a __gc class.

Example

#using <mscorlib.dll>

using namespace System;

struct U {

 int m_data;

 char * a[100];

 int sum(int n) {

 return n * (n + 1) / 2;

 }

 void f() {

 int* p = &m_data;

 }

};

__gc struct M {

 U member; // embedded unmanaged class

};

int main() {

 M __pin *pM = new M;

 pM->member.f();

}

The this pointer in U is a __nogc pointer , so f cannot be called without first pinning M. Otherwise, if the runtime garbage collector begins compacting during the execution of

pM->member.f();

the object of M could be moved in the heap and the this pointer will become invalid.

An unmanaged class can also be nested in a managed class. In this case, the __nogc keyword must be used before the definition of the unmanaged class.

Example

#using <mscorlib.dll>

__gc struct M {

 __nogc struct U { // nested unmanaged class

 int m_data;

 U() { System::Console::WriteLine("U::U"); }

 void f() { int* p = &m_data; }

 };

 int ia __nogc[100]; // embedded unmanaged array

};

M::U u; // use unmanaged nested type

Output

U::U

Constraints

· The __nogc keyword shall precede a declaration or definition of an unmanaged class nested in a managed class.

· An object of a __gc class must be pinned before any unmanaged functions are called on the embedded unmanaged object. This can be done by pinning the whole object or the embedded sub-object.

· An unmanaged class embedded in a value class shall be a POD type.

16.2 __nogc Pointers in Managed Classes

There are no restrictions on __nogc pointer types of members in managed classes.

A common use of __nogc pointers in managed classes is "wrapping" unmanaged C++ classes with managed classes. This is often the easiest way to make an unmanaged class interoperate with other common language runtime targeting languages. Given an unmanaged class C, wrap C with managed class M as follows:

4. Declare a single data member of M whose type is C*.

5. For each constructor of C, define a corresponding constructor for M that creates an object of C via operator __nogc new, which calls the corresponding constructor of C.

6. If the managed class holds the only reference to the unmanaged class, define a destructor for M which calls operator delete on the pointer to C.

7. For each remaining method in the unmanaged class, the wrapper class declares an identical method and delegates to the unmanaged method.

Example

#using <mscorlib.dll>

class CppClass {

public:

 CppClass() {}

 ~CppClass() {}

 int method1() { return 0; }

 void method2(int) {}

};

__gc class MCppClass {

public:

 CppClass *p;

 MCppClass() { p = new CppClass(); }

 ~MCppClass() { delete p; }

 int method1() { return p->method1(); }

 void method2(int i) { p->method2(i); }

};

The exact technique for wrapping an unmanaged class varies according to the semantics of the class. Some classes will be considerably harder than others to wrap correctly. However, it is not always necessary to wrap a class completely for it to interoperate well with other CLS-compliant languages.

16.3 __gc Pointers in Unmanaged Classes

It is illegal to declare a member of an unmanaged class to have __gc pointer type. In order to "point" to a managed object from the C++ heap, the header file vcclr.h provides the type-safe wrapper template gcroot. Use of this template allows the programmer to embed a virtual __gc pointer in an unmanaged class and treat it as if it were the underlying type.

Example

#using <mscorlib.dll>

#include <vcclr.h>

using namespace System;

class CppClass {

public:

 gcroot<String*> str; // can use str as if it were String*

 CppClass() {}

};

int main() {

 CppClass c;

 c.str = new String(S"hello");

 Console::WriteLine(c.str); // no cast required

}

Output

hello

The gcroot template is implemented using the facilities of the value class System::Runtime::InteropServices::GCHandle, which provides "handles" into the garbage-collected heap. Note that the handles themselves are not garbage collected; they must be manually freed when no longer in use (performed by the destructor in the gcroot class). The memory management for any unmanaged class containing a gcroot member must be robust to avoid leaking GCHandle slots.

17 __abstract Keyword

The __abstract keyword can only be applied to a __gc class or __gc interface. This indicates that it must be further derived from before an object can be constructed. Definitions for any or all member functions can be provided.

Example

#using <mscorlib.dll>

__gc __interface IFC { void f(); };

__abstract __gc struct A : IFC {

 void f() {}

};

__gc struct B : IFC {

 void f() {}

};

int main() {

 // A *pA = new A; // error: A is abstract

 B *pB = new B; // ok

}

Characteristics

· The __abstract keyword on a __gc class or __gc interface just indicates that it cannot be instantiated directly. It has no effect on the members of the class or interface, for example whether or not they are pure virtual functions.

Constraints

The following restrictions apply to abstract classes.

· The __abstract keyword shall not be applied with the __value keyword.

· The __abstract keyword shall not be applied with the __sealed keyword.

The __abstract keyword on an interface is redundant, but is allowed.

18 __sealed Keyword

The __sealed keyword can only be applied to a __gc class. This indicates that the __gc class cannot be further derived from.

Constraints

· __sealed shall not be applied to an __abstract class.

· __sealed shall not be applied to a __gc interface.

Example

__sealed __gc struct SGC {

 int i;

};

__gc struct D : SGC {}; // error: cannot derive from __sealed __gc struct
The __sealed keyword on a __value class is redundant, but is allowed.

The __sealed keyword can also be applied to methods:

· A method marked __sealed shall not be overridden in a derived class.

· __sealed shall be applied only to virtual methods.

Example

#using <mscorlib.dll>

__gc struct B {

 __sealed virtual int f() { return 0; }

 // __sealed int g(); // error: non-virtual method

 // __sealed static int h(); // error: static method

 // __sealed int i; // error: data member

};

__gc struct D : B {

 // int f(); // error: cannot override sealed method

};

19 Static Class Constructors

Any managed class can have a class constructor, which is called exactly once by the common language runtime to ensure that any static data members in the class are initialized before the class is instantiated.

The order of class constructor invocation is undefined, but is guaranteed to occur before the running program creates any objects of the class type or references any static members of the type. For more details, see §7.6.7.1 of Common Language Infrastructure (CLI), Part 2: General
. The syntax is identical to a default constructor except for the appearance of the static storage class specifier.

Example

#include <stdlib.h>

#using <mscorlib.dll>

__gc class M {

public:

 static M() { s_i = atol("1234"); };

 static int s_i;

};

Constraints

· A class constructor shall not directly or indirectly create any objects of its class type.

· A class constructor shall not reference any non-static members of its class.

· Two or more class constructors shall not contain circular dependencies.

Example

__gc struct N {

 static N() { s_i = M::f(); } // error: M must be loaded before N

 int f();

 static int s_i;

};

__gc struct M {

 static M() { s_i = N::f(); }; // error: N must be loaded before M

 int f();

 static int s_i;

};

Note that if a class constructor refers to a member of another class, the common language runtime will load them in the correct order.

· A class constructor shall be defined inside the class definition. No out-of-line definition is allowed.

· A class constructor shall have zero parameters.

· A class constructor shall not have a constructor-initializer. const static class members must be initialized at the point of declaration.

Example

__gc class M {

public:

 static int s_i;

 static M() : s_i(0) {}; // error: ctor-initializer
 static const int s_k; // error: needs initializer
 static const int s_j=10; // ok
};

20 Managed Operators

The Managed Extensions have several kinds of managed operators. They are discussed in §20.1 and §20.2.

Operators work as expected on __value classes using infix notation. However, the distinguished name must be used to call operators on __gc classes. This occurs because operators take parameters with pointer type for __gc classes, but user-defined operators cannot be called on pointer types in C++.

Example

#using <mscorlib.dll>

__gc class G {

 int i;

public:

 static bool op_Inequality(G* g1, G* g2) {

 return g1->i != g2->i;

 }

};

int main() {

 G* g1 = new G;

 G* g2 = new G;

 // ok: direct call

 bool b1 = G::op_Inequality(g1, g2);

 // ok: but does pointer comparison, only

 bool b2 = (g1 != g2);

 // error: no operator that takes two objects as parameters

 // bool b3 = (*g1 != *g2);

}

Operators for value classes can pass __gc parameters by reference even though this is not compliant with the Common Language Specification. To ensure interoperability, the programmer should check conformance of his or her code with the Common Language Specification.

20.1 Arithmetic, Logical, and Bitwise Operators

The common language runtime supports arithmetic operators on managed classes. They are defined as ordinary static methods with distinguished names. Most .NET compilers, including C++, map these specially named methods into infix operators for the defining class.

Example

#using <mscorlib.dll>

__value class M {

 int i;

public:

 static bool op_Inequality(M m1, M m2) { // maps to operator!=

 return m1.i != m2.i;

 }

};

bool all_eq(M m1, M m2, M m3) {

 // can call op_Inequality directly

 if (M::op_Inequality(m1, m2))

 return false;

 // can also call M::op_Inequality using infix notation

 if (m2 != m3)

 return false;

 return true;

};

Constraints

· A managed class shall not define an ordinary C++ operator, that is, by using the operator keyword.

Example

__gc class M {

 bool operator==(M*); // error
};

__value class V {

 bool operator>=(V); // error
· A managed operator shall have static storage class.

· A managed operator for a __value class shall specify at least one argument whose type is the defining class. The reference syntax (§8) is allowed for the parameters of __value class operators.

· In a managed class, any member whose identifier is a distinguished common language runtime operator name defines a common language runtime operator. For example, the user cannot define an ordinary instance method or a data member named op_Equality.

· A managed operator for a __gc class shall specify at least one argument whose type is pointer-to the defining class.

Example

#using <mscorlib.dll>

__gc class G {

 int i;

public:

 static bool op_Inequality(G *g1, G *g2) { return g1->i != g2->i; }

};

bool all_eq(G *g1, G *g2, G *g3) {

 if(G::op_Inequality(g1, g2)) // direct call only
 return false;

 return true;

};

The following is the list of arithmetic, logical, and bitwise operators supported by the Common Language Specification that can be implemented using the Managed Extensions.

Unary operators

· op_Decrement (--)
· op_Increment (++)
· op_Negation (!)
· op_UnaryNegation (-)
· op_UnaryPlus (+)
Binary operators

· op_Addition (+)
· op_Assign (=)
· op_BitwiseAnd (&)
· op_BitwiseOr (|)
· op_Division (/)
· op_Equality (==)
· op_ExclusiveOr (^)
· op_GreaterThan (>)
· op_GreaterThanOrEqual (>=)
· op_Inequality (!=)
· op_LeftShift (<<)
· op_LessThan (<)
· op_LessThanOrEqual (<=)
· op_LogicalAnd (&&)
· op_LogicalOr (||)
· op_Modulus(%)
· op_Multiply(*)
· op_RightShift (>>)
· op_Subtraction (-)
Example

#using <mscorlib.dll>

__value struct V {

 int i;

 static bool op_Equality(V v, int i) { return v.i == i; }

 static bool op_Equality(int i, V v) { return v.i == i; }

};

int main() {

 V v = {10};

 if (v == 10) // calls V::op_Equality(V,int);

 return 0;

 else

 if (20 == v) // calls V::op_Equality(int,V);

 return 0;

 return 1;

}

20.2 Conversion Operators

There are two conversion operators. They are unary operators.

· op_Implicit
· op_Explicit
By convention, op_Implicit should be defined when a conversion between two types does not lose information. Otherwise op_Explicit should be defined. Both are used for the two kinds of conversion operators supported by the common language runtime that are described in the following sections.

20.2.1 Convert-From Operators

These are so-named since they create an object of the class in which the operator is defined from an object of some other class.

Standard C++ does not support convert-from operators other than by direct calls. They are not called by any cast syntax or via implicit conversion. It uses constructors for this purpose. The Managed Extensions provide syntactic support for calling convert-from operators. They need to be called directly.

To interoperate well with other CLS-compliant languages, the user may wish to wrap each user-defined unary constructor for a given class with a corresponding convert-from operator.

Constraints
A convert-from method is defined like a normal C++ method, following the rules for common language runtime conversion operators:

· They shall use static methods.

· They shall be named op_Implicit or op_Explicit. op_Implicit should be used for conversions that do not lose precision such as short-to-int. op_Explicit should be used for the converse case.

· They shall return an object of the containing class.

· The "from" type shall be the sole parameter type.

Convert-from methods must be called in the same way as ordinary methods.

Example

#using <mscorlib.dll>

__value struct MyDouble {

 double d;

 MyDouble(int i) { d = (double) i; }

 // Wrap the constructor with a convert-from operator.

 // Use op_Implicit because it does not lose precision.

 static MyDouble op_Implicit(int i) {

 MyDouble d(i);

 return d;

 }

};

int main() {

 int i = 10;

 MyDouble md = MyDouble::op_Implicit(i);

}

20.2.2 Convert-To Operators

These are so-named since they convert an object of the class in which the operator is defined to some other object. Similar to convert-from operators, they are declared using op_Explicit and op_Implicit.

Example

#using <mscorlib.dll>

using namespace System;

__value struct MyInt {

 Int32 i;

 // convert MyInt to String*

 static String* op_Implicit(MyInt val) {

 return val.i.ToString();

 }

 MyInt(int _i) : i(_i) {}

};

int main() {

 MyInt mi(10);

 String *s = mi; // calls MyInt::operator String*()

}

op_Explicit can be used to define explicit operators. This is appropriate for conversions that potentially lose data in some way. To invoke an explicit convert-to operator, a cast must be used.

Example

#using <mscorlib.dll>

using namespace System;

__value struct MyDouble {

 double d;

 // convert MyDouble to Int32

 static Int32 op_Explicit(MyDouble val) {

 return (int)val.d;

 }

};

int main() {

 MyDouble d;

 int i;

 // i = d; // error: must use explicit cast

 i = (int)d; // ok

}

21 Metadata

Compilation emits metadata that running programs may use in a variety of ways, as discussed in the following sections. The metadata, MSIL, and other files required for a program to run are packaged together along with a manifest in an assembly. Managed types are self-describing utilizing metadata that is stored in assemblies.

21.1 Class Visibility

The public class-visibility-specifier indicates that a class will be visible to any source files that contain a #using directive for its containing assembly. Conversely, the private class-visibility-specifier indicates that a type will not be visible to any source files that contain a #using directive for its containing assembly. However, private types are visible within the same assembly. The default visibility for a class is private.

Example

__gc public class ExportedClass{}; // visible outside the assembly
__gc private class InternalClass{}; // visible only within the assembly
__gc struct InternalStruct{}; // visible only within the assembly
21.2 Member Visibility

The internal and external visibility for a member of a public class can differ. This is accomplished using pairs of access-specifiers selected from public, protected, and private.

Characteristics
· When two access-specifiers are used, the most restrictive visibility is the external visibility. Ordering is irrelevant.

Example

public __gc class G {

private public:

 void m1(); // externally private, internally public
public private:

 void m2(); // externally private, internally public
};

· If only one access specifier is given, it is identical to giving the same specifier twice.

Example

public __gc class G {

public:

 void m1(); // externally public, internally public
public public:

 void m2(); // externally public, internally public
};

· Any of the nine combinations of access specifiers can be used.

	First access specifier
	Second access specifier
	Effect

	public
	public
	Externally and internally public

	public
	private
	Externally private, internally public

	public
	protected
	Externally protected, internally public

	private
	public
	Externally private, internally public

	private
	private
	Externally and internally private

	private
	protected
	Externally private, internally protected

	protected
	public
	Externally protected, internally public

	protected
	private
	Externally private, internally protected

	protected
	protected
	Externally and internally protected

· The visibility of a member outside of its defining assembly can never be greater than the visibility of the class in which it is declared. If an access specifier of a member allows greater visibility, the class access specifier applies instead.

Example

private __gc class G1 {

public protected:

 void m1(); // externally private, not externally protected

};
21.3 Extensible Metadata

Metadata is user-extensible. For example, in MTS 1.0, behavior with respect to transactions, synchronization, load balancing, and so on, was specified through custom GUIDs inserted into the type library by using the ODL "custom" attribute. Hence, a client of an MTS server could determine its characteristics by walking the type library.

In the common language runtime, the analogue of the type library is metadata and the analogue of the ODL "custom" attribute is common language runtime Custom Attributes.

21.3.1 Custom Attributes

A custom attribute is a strongly typed technique to extend metadata. It is based on the concept of C++ attributes that are a C++ generalization of IDL/ODL attributes.

Example

[MyAttr(7, 3.141593, namedArg="f")]

__gc class SomeClass { ... };

The key observation is that a modifier looks like a constructor call except that it can have named arguments. Named arguments can be any public field or property, but they must appear after the actual constructor arguments. In fact, the definition of MyAttr could be as follows.

#using <mscorlib.dll>

using namespace System;

[attribute(AttributeTargets::Class)]

__gc class MyAttr : public Attribute {

public:

 MyAttr(int, float) {};

 String* namedArg;

};

Of course, to specify MyAttr in different ways, its constructor should be overloaded.

All custom attributes are characterized by inheriting directly or indirectly from System::Attribute and by the "attribute" attribute. This makes identifying attribute definitions in metadata fast and easy.

A custom attribute definition specifies where it is syntactically allowed. The above "MyAttr" attribute is allowed on classes as indicated by the argument

"System::AttributeTargets::Class"

Actually

[attribute(Class)] ...

is sufficient as long as there are no name collisions. The following definition of AttributeTargets allows many usage choices.

__value enum AttributeTargets {

 Assembly = 0x1,

 Module = 0x2,

 Class = 0x4,

 Struct = 0x8,

 Enum = 0x10,

 Constructor = 0x20,

 Method = 0x40,

 Property = 0x80,

 Field = 0x100,

 Event = 0x200,

 Interface = 0x400,

 Parameter = 0x800,

 Delegate = 0x1000,

 ReturnValue = 0x2000,

 All = 0x3fff,

 ClassMembers = 0x17fc,

};

Bitwise ORs of these values can be used too.

Corresponding to the enum members of AttributeTargets are the attribute-usage-specifiers:

	assembly
	module
	class
	struct
	enum
	constructor
	method

	property
	field
	event
	interface
	parameter
	delegate
	returnvalue

These can be used to disambiguate attribute usage as to whether an attribute applies to:

· A method or its return value.

· A property or to the property accessor.

· An event or to the event accessor.

Otherwise, a usage specifier is declarative with error checking.

Example

#using <mscorlib.dll>

using namespace System;

[AttributeUsage(AttributeTargets::Event |

 AttributeTargets::Method |

 AttributeTargets::ReturnValue |

 AttributeTargets::Assembly |

 AttributeTargets::Module , AllowMultiple = true)

]

public __gc struct ABC {

// The System::Attribute base class is inferred from AttributeUsage

 ABC(System::Type*, int) {}

 ABC(int) {}

};

Example

This code:

#using <mscorlib.dll>

using namespace System;

[AttributeUsage(AttributeTargets::Event, AllowMultiple = true)]

public __gc struct ABC {

// The System::Attribute base class is inferred from AttributeUsage

 ABC(System::Type*, int) {}

 ABC(int) {}

};

public __gc struct AAA {

 [ABC(1)]

 __delegate void SomeDel();

 [event:ABC(__typeof(ABC), 5)]

[event:ABC(__typeof(System::String), 7)]

__event SomeDel * Event;

};

has these results:

· ABC(1) is invalid because ABC is not allowed on delegates.

· ABC(__typeof(ABC), 5) applies to the event 'Event'.

· ABC(__typeof(System::String), 7) applies to the event 'Event'.

Assembly and module attributes are specified in anonymous attribute blocks. Attribute blocks in the global namespace are terminated with a semicolon.

Example

[assembly:ABC(8), module:ABC(9)];

To prevent namespace collisions, all custom attributes implicitly end with Attribute; for example, MyAttr could have been specified with

__gc class MyAttrAttribute : public Attribute ...

And usage could be either MyAttr or MyAttrAttribute. The attribute attribute is a special case: it is an alias for System::AttributeUsageAttribute, which could be specified as

[AttributeUsage(AttributeTargets::Class)] ...

assuming using namespace System; is in the source and the above aliasing. However, attribute is not formally a custom attribute because AttributeUsageAttribute is a custom attribute. This means it is not possible to specify attributeAttribute.

AttributeUsageAttribute has two optional named arguments:

· bool AllowMultiple; // default: false

· bool Inherited; // default: true

AllowMultiple=true indicates that a given attribute, possibly with different arguments, can appear more than once when applied to a given syntactic element.

Example

#using <mscorlib.dll>

using namespace System;

[attribute((Class | Method), AllowMultiple=true)]

public __gc class AnotherAttr : public Attribute {

public:

 AnotherAttr() {}

 AnotherAttr(String*) {}

 AnotherAttr(int, Object* __gc[]) {}

 Object* var1;

 Object* var2 __gc[];

};

[AnotherAttr(17, { __box(3.14159), 3 }), AnotherAttr("Atb2")]

public __gc class B {

public:

 [AnotherAttr("Sna"), AnotherAttr(var1=99, var2={ 16 , 8.4 })]

 void SnaZo() {}

};

Attribute arguments are limited to compile time constants modulo Object* casts. The following types are allowed.

· bool
· wchar_t
· char
· unsigned char
· short
· unsigned short
· int
· unsigned int
· __int64
· float
· double
· String *
· char *
· wchar_t *

· Object *
· __value enum
· __gc array of any type above

Strings must be specified as literals with optional prefix 'L', or 'S'. Arrays use the array initializer syntax, as seen in the above example. If there is any ambiguity between overloads, an explicit cast can be used. In an array, only the first element needs the cast.

Integer, enum, and floating-point arguments can either be literals or const types such as

const int one = 17;

const float two = 3.3;

or simple expressions that evaluate to constants.

Example

[MyAttr(2*one+9, two*3.14/9)]

21.3.2 Declarative Security

Declarative security is specified through custom attributes that inherit directly or indirectly from

System::Security::Permissions::SecurityAttribute

There are many such attributes hard-coded in mscorlib.dll. Additionally, you may specify any permission encoding with a custom attribute.

21.4 Importing Metadata with #using

A program can directly import metadata contained via the #using directive. Files that contain metadata include:

· A common language runtime assembly (§21).

· An .exe file from another .NET language.

· An .obj file from a compilation with the /clr option.

· A .netmodule file.

Example

// import the common language runtime base class assembly

#using <mscorlib.dll>

using namespace System;

int main() {

 Console::WriteLine("Hello, World"); // defined in mscorlib.dll

}

Output

Hello, World

Characteristics
· #using has the same syntax as #include. Both the <file-name-spec> and "file-name-spec" forms are allowed and have the same effect.

· The preprocessor searches for file-name-spec in the following order.

a. If file-name-spec is a fully qualified path name, it will search for the assembly via this path name.

b. The current working folder, that is, the folder from which the user is running the compiler.

c. The common language runtime system folder.

d. The folder specified by the /AI compiler option.
e. The folders specified by the LIBPATH environment variable.

This order is followed also if a header file of the program contains a #using directive.

Constraints

· There shall be a #using <mscorlib.dll> in any source file that declares or uses a managed class.

· At runtime, the common language runtime will raise an exception if an assembly is not present in the current working folder, or registered in the Global Assembly Cache (GAC). An assembly can be registered in the GAC using Gacutil.exe.

21.5 Metadata as Binary Headers

With the #using directive and metadata files, you can restructure your program to reduce the number of header files. It is faster to import a metadata file via #using than it is to parse the corresponding header file.

As mentioned in §21.4, any file containing metadata can be imported with the #using directive. This helps to decouple dependencies and can speed compilation.

Characteristics
· If the file named in a #using directive is an assembly, only managed classes marked public will be visible.

· If the file named in a #using directive is not an assembly, then all managed classes, public or private, will be visible.

This allows programmers to use .obj files as binary headers in their own projects, while enforcing visibility rules when the whole project is deployed.

22 __identifier Keyword

The __identifier keyword provides a mechanism to treat a C++ keyword as if it were actually an identifier. This is sometimes required when using classes written in another language. For example, an imported class can be named "operator". Without the __identifier keyword, C++ code could not make use of this class.

Example

#using <mscorlib.dll>

#using "operator.dll" // contains "operator" class
void () {

 __identifier(operator) *pO = new __identifier(operator);

}

Characteristics
· The __identifier keyword can appear anywhere a C++ identifier can legally appear.

Constraint

· The argument to __identifier shall be a C++ keyword.

23 The __typeof Keyword

This built-in operation provides convenient syntactic access to the functionality of the System::Type::GetType() method. Whereas GetType() must be called on an object of the given type, __typeof() can take an abstract-declarator as an argument, and consequently does not require an object to be created.

Example

#using <mscorlib.dll>

using namespace System;

__gc struct G { int i; };

void f() {

 G *pG = new G;

 Type *pType = pG->GetType(); // GetType requires an object

 Type *pType2= __typeof(G); // __typeof does not

}

Constraint

· The argument to __typeof shall be managed type.

24 Compiling Code for the Runtime

There are two main scenarios for using Managed Extensions. A project is developed with Managed Extensions for C++ that interoperates with unmanaged code, or other managed projects. The other main use is to port existing unmanaged C++ projects to the .NET Framework.

The following sections discuss compilation for these scenarios. The following constraint applies to all Managed Extensions projects.

Constraint

· A Managed Extensions project shall not have a main, wmain, WinMain, wWinMain, or DllMain function that contains parameters of managed type.

24.1 Projects That Use Managed Extensions

By default, the /clr compiler option is not in effect. When it is switched on, metadata is generated for all code, and all functions will be compiled to managed code where possible. Not all C++ constructs can be translated to managed code for this product release. Unmanaged code will be generated in the following cases automatically.

· A function containing __asm blocks.

· A function containing any form of varargs/stdargs in its parameter list, although merely calling a varargs function does not qualify.

· Compiler-generated thunks or helper functions. Native thunks are generated for any function call through a function pointer, including virtual function calls.

· A function that calls setjmp.

· A function that uses certain intrinsic routines to directly manipulate machine resources. For example, use of __enable and __disable, _ReturnAddress and _AddressOfReturnAddress, or multimedia intrinsics will cause the function to be compiled as unmanaged native code.

· Any code which comes after the #pragma unmanaged directive. Note that the inverse, #pragma managed, is also supported.

· A function that contains references to aligned types, that is, types declared using __declspec(align(...)).

The /clr compiler option implies that the /MT compiler option is switched on. This ensures that multithreaded versions of the runtime routines are selected from the standard header (.h) files. The common language runtime garbage collector runs finalizers (§4.3) on a separate thread from execution.

24.2 Porting Unmanaged Code to the .NET Framework

There are few restrictions on compiling unmanaged C++ code for the common language runtime.

Constraints
· All member functions shall be ANSI prototyped.

· Different translation units shall not contain different definitions of a class.

· Unmanaged C++ code shall be compiled with the /clr compiler option on.

25 Unsupported Features

Currently, the following three features are not supported. They are listed here for completeness.

25.1 Verifiable Code

There is no verifier for MSIL generated for Managed Extensions for C++ programs.

Developers and testers need to check code for conditions that may have adverse effects. These include buffer and stack overflows, type correctness, and pointer operations.

25.2 Managed Templates

Managed templates are not supported for this release.

Example

template <class T> __gc class G {}; // error

Managed types shall not be the parameter type of a template type list. However, templates can be instantiated with managed types. For example, see vcclr.h (§16.3).

25.3 C++ RTTI versus Runtime Reflection

The common language runtime has a much richer reflection mechanism than C++. The entry point of this information is the GetType() method of System::Object.

Example

void f(String *s) {

 Type *t = s->GetType();

}

Constraint

· The C++ RTTI operators shall not be applied to managed objects. RTTI is not supported.

25.4 Non-Public Inheritance

The common language runtime has no representation for non-public inheritance.

Example

public __gc class B { public public: int i; };

public __gc class D : private B {}; // error

25.5 const and volatile on Member Functions

The const and volatile modifiers on member functions are not supported.

Example

__gc class G {

 int K(int x, int y) const {return x;} // error
};

26 References

Anders Hejlsberg and Scott Wiltamuth, C# Language Specification, Microsoft Corporation, October 2000.

Hewlett-Packard, Intel Corporation, and Microsoft Corporation, Common Language Infrastructure (CLI), Part 2: General, Proposed ECMA Standard (ECMA TC39/TG3), Section 5.3.1, October 2000.

Hewlett-Packard, Intel Corporation, and Microsoft Corporation, Common Language Infrastructure (CLI), Part 2: General, Proposed ECMA Standard (ECMA TC39/TG3), Section 10.5, October 2000.

ISO/IEC FDIS:14882:1998 Programming Languages – C++, 732pp.

Hewlett-Packard, Intel Corporation, and Microsoft Corporation, Common Language Infrastructure (CLI), Part 2: General, Proposed ECMA Standard (ECMA TC39/TG3), Section 7.6.7.1, October 2000.

� Anders Hejlsberg and Scott Wiltamuth, C# Language Specification, Microsoft Corporation, October 2000.

� Hewlett-Packard, Intel Corporation, and Microsoft Corporation, � HYPERLINK "http://msdn.microsoft.com/net/ecma/default.asp" ��Common Language Infrastructure (CLI), Part 2: General�, Proposed ECMA Standard (ECMA TC39/TG3), Section 5.3.1, October 2000.

� Hewlett-Packard, Intel Corporation, and Microsoft Corporation, � HYPERLINK "http://msdn.microsoft.com/net/ecma/default.asp" ��Common Language Infrastructure (CLI), Part 2: General�, Proposed ECMA Standard (ECMA TC39/TG3), Section 10.5, October 2000.

� ISO/IEC FDIS:14882:1998 Programming Languages – C++, 732pp.

� Hewlett-Packard, Intel Corporation, and Microsoft Corporation, � HYPERLINK "http://msdn.microsoft.com/net/ecma/default.asp" ��Common Language Infrastructure (CLI), Part 2: General�, Proposed ECMA Standard (ECMA TC39/TG3), Section 7.6.7.1, October 2000.

