Filename: MigrationGuidePart1_CD.doc
34

1 Managed Extensions for C++ Migration Guide

Abstract

The Managed Extensions for C++ Migration Guide is an introductory guide for the C++ developer who intends using Managed Extensions for C++ to leverage existing C++ classes and C++ programming skills in targeting the .NET Framework common language runtime.

Managed Extensions for C++ are extensions to the C++ language that enable developers to write code that targets the common language runtime. For more information about Managed Extensions, see the Managed Extensions for C++ Specification and Managed Extensions for C++ Programming.

The Migration Guide consists of two parts:

· Part I is an introduction to techniques for wrapping unmanaged C++ classes with Managed Extensions for C++ classes that act as proxies.

· Part II discusses the use of Platform Invocation Services, or PInvoke, provided by the common language runtime. PInvoke provides a direct way to use functions in existing native C++ DLLs in a managed application.

Navigation

To navigate within this document, use the help Contents window (CTRL+ALT+F1).

2 Part I: Introduction to Wrapping C++ Classes

Part I of the Migration Guide provides an introduction to techniques for wrapping unmanaged C++ classes with Managed Extensions for C++ classes that act as proxies.

Part I discusses typical techniques for wrapping constructors, the destructor, member functions, binary operators, and assignment and copy constructors. Techniques for wrapping virtual functions, and wrapping in the presence of inheritance are not covered here. The actual techniques used will depend on the unmanaged C++ class that is being wrapped, and may differ from those discussed here.

The complete code for the example discussed in Part I is collected in Appendix: Sample Code.

2.1 Accessing C++ Code from .NET Framework Objects

Managed Extensions for C++ supports the interoperation of code written in any .NET Framework-compliant language with code written in C++. "Unmanaged C++" refers to C++ that is compiled to the assembly language of a processor.

This is achieved by writing a proxy or "wrapper" class in Managed Extensions for C++ for an unmanaged C++ class. A wrapper class interoperates with its unmanaged counterpart and serves as a managed proxy for it. It provides an API with similar functionality to the unmanaged class. The API can be called by code written in any managed language.

This section describes in detail how to write a Managed Extensions wrapper class. A nontrivial unmanaged C++ class is used as a running example of how unmanaged C++ code is "wrapped."

Example

Suppose we want to wrap this C++ class:

class CppClass
{
public:
// constructor
CppClass() {}
// destructor
~CppClass() {}
// methods
void native_f() {}
};
Using the procedure below we obtain this wrapper class:

__gc class MClass
{
public:
 // constructor
 MClass() { m_pC = new CppClass(); }
 // destructor
 ~MClass() { delete m_pC; }
 // method
 void managed_f() { m_pC->native_f(); }
private:
 CppClass * m_pC;
};

The class MClass acts as a proxy for CppClass and effectively has the same functionality as CppClass. Pairs of objects of CppClass and MClass are constructed and deleted contemporaneously. The managed class contains a data member that is a pointer to the unmanaged class. The functionality of managed_f() is a managed proxy for native_f() that is called via the C++ pointer, m_pC.

Wrapping a class is implemented here by composition. In general, given an unmanaged class CppClass, the steps to wrap class CppClass with a managed class MClass follow:

1. Create a managed class MClass and declare a single member of MClass whose type is CppClass *.

2. For each constructor of CppClass, define a corresponding constructor for MClass which creates an instance of CppClass via the unmanaged new operator, calling the original constructor of CppClass.

3. If the managed class MClass holds the only reference to the unmanaged class CppClass, define a destructor for CppClass which calls the delete operator on the member pointer to CppClass.

4. For each remaining method in CppClass, declare an identical method which simply delegates the call to the unmanaged version of the method in CppClass, performing any parameter marshaling if required.

The steps above outline how we can wrap an unmanaged class. The specific technique for wrapping an unmanaged class depends on the semantics of the class being wrapped.

It may not be necessary to wrap all member functions or data members of the unmanaged class. We need only wrap those members of the unmanaged class which are accessed by managed objects. In the example above, step 4 was not required.

Before wrapping an unmanaged C++ class, first consider its structure and decide which members need to be wrapped. Here are some simple guidelines:

· If a member function or data member is private, then by design, it is not meant to be accessed by other unmanaged classes. That member should not be accessible to managed objects either.

· Typically, helper functions are used internally by a class and are not designed to be accessed by other classes. These also should not be wrapped.

2.2 Introducing the ATL Security Class Example

To demonstrate further how an unmanaged C++ class can be wrapped using Managed Extensions for C++, we will use an ATL security class as a running example. It is provided as part of the Visual C++ Active Template Library.

This is the CSid class which itself is a wrapper for the SID structure. SID stands for security identifier. The SID structure is a variable-length structure used to uniquely identify users or groups. CSid simply exposes the SID structure as a C++ class which can be manipulated through various operations.

We follow the procedure outlined above to show how the CSid class, and other classes, can be wrapped using Managed Extensions for C++. The wrapper class will enable other .NET Framework-compliant languages, for example Visual C#, effectively to use the CSid class as though it were a managed type.

The first step in wrapping an unmanaged class is to define a managed class and declare a data member whose type is a pointer to the class being wrapped. In our case, we will define a managed class called ManagedCSid which contains the m_pCSid data member whose type is CSid*.

The result is the following class.

Example

#include <atlsecurity.h>
#using <mscorlib.dll>
using namespace System;
public __gc class ManagedCSid
{
public:
private:

CSid __nogc* m_pCSid;
};
We recall that the __gc keyword on the ManagedCSid class declaration indicates that its objects are allocated on the common language runtime heap. Also, the public keyword on this class declaration signifies that it is accessible outside of its assembly, as required.

2.3 Techniques for Constructors and Member Functions

In this section, we discuss techniques that can be used to wrap both constructors and member functions. In Techniques for Constructors and Destructor, we discuss techniques that are applicable just to constructors and the destructor and in Techniques for Member Functions to member functions.

2.3.1 Defining the Constructors

We next define the constructors for ManagedCSid. For each constructor of CSid, we will define a corresponding constructor for ManagedCSid which creates an instance of CSid by calling the original constructor of CSid. CSid has the following six constructors and two copy assignment operators:

// Default constructor
CSid();

explicit CSid(LPCTSTR pszAccountName, LPCTSTR pszSystem = 0);

explicit CSid(const SID *pSid, LPCTSTR pszSystem = 0);

CSid(const SID_IDENTIFIER_AUTHORITY &IdentifierAuthority, BYTE nSubAuthorityCount, ...);

// Copy constructors
CSid(const CSid &rhs);

CSid(const SID &rhs);

// Assignment operators
CSid &operator=(const CSid &rhs);

CSid &operator=(const SID &rhs);

We begin with the default constructor. Wrapping it consists of instantiating an instance of CSid using its default constructor as shown here.

ManagedCSid::ManagedCSid()

{

 m_pCSid = new CSid();

}

In unmanaged C++, it is often necessary for a class to have a user-defined copy constructor and copy assignment operator to prevent member-wise copying. However, in Managed Extensions for C++ they are defined in a different way because objects of __gc classes are not passed by value.

2.3.2 Selective Wrapping

As mentioned in Accessing C++ Code from .NET Framework Objects, when wrapping a class, we need only to wrap the class members that are used. Another example of this is the following constructor of CSid:

explicit CSid(const SID *pSid, LPCTSTR pszSystem = 0);

Do we really need to expose this functionality to the runtime? When would a managed object need to call this constructor? The answers depend on the application being developed.

Suppose that in our application, we do not want to expose the functionality of this constructor to managed objects because none of the clients will be using or passing in a SID structure. Otherwise, we would need to write a wrapper for SID.

2.3.3 Variable Number of Arguments

One of the constructors provided by CSid has the following signature:

CSid(const SID_IDENTIFIER_AUTHORITY &IdentifierAuthority, BYTE nSubAuthorityCount, ...);

This constructor takes a variable number of arguments. In general, if a function takes a variable number of arguments, the compiler automatically compiles it as unmanaged code. We cannot wrap this function directly. A solution here is to use overloading to wrap functions with variable number of arguments for the required uses of the function.

The choice of overloading functions to implement depends on the application.

The preferred general pattern is to provide overloads for one, two, and three parameters of the variable parameters. Additionally an overload should be provided that takes an array of Object *. For example, in Managed Extensions, we can declare a member function that takes a variable number of parameters as follows:

int f(int i, [ParamArray] Object * args[]);

The ParamArray attribute enables interoperability with other .NET Framework-compliant languages. The array of parameters is the last argument of the member function or constructor.

The function f can be called in Managed Extensions as follows:

Object * args[] = {"the", "remaining", "arguments", "are", "many"};

f(5, args);

2.3.4 Data Marshaling

The second constructor provided by CSid creates an instance of CSid from an existing account name and a system name which has a default value of 0.

explicit CSid(LPCTSTR pszAccountName, LPCTSTR pszSystem = 0);

The type of the parameters of this constructor is LPCTSTR. However, LPCTSTR is an unmanaged string type and is not compliant with the common language specification (CLS). It cannot be used by other .NET Framework-compliant languages. The runtime provides the String type for strings. The wrapping constructor should expose its arguments as String type: the wrapping constructor must convert between String and LPCTSTR parameters. This is called data marshaling or marshaling in general.

2.4 Techniques for Constructors and Destructor

In this section, we discuss wrapping techniques that are applicable only to constructors and the destructor.

2.4.1 Default Arguments and Helper Functions

For constructors, there is an additional restriction that C++ does not allow a constructor to be called from another constructor of the same class. Instead, you can declare a helper function which calls the original constructor.

Helper Functions

In the following example, the Employee constructor is overloaded using the init() helper function.

It is not possible to rewrite this constructor:

Employee(int ID, int dept = 0);
as

Employee(int ID, int dept = 0);
Employee(int ID) {Employee(ID, 0);}
because the second constructor is defined in terms of a constructor.

Instead it is overloaded using the helper function init.

void init(int ID, int dept)

{

 // initialize data members of Employee
 Emp_ID = ID;
 Emp_dept = dept;
}

void Employee(int ID, int dept)

{

 init(ID, dept);

}

void Employee(int ID)

{

 init(ID, 0);

}

Declaring the Constructors

At this stage, the declarations for the overloaded wrapping constructors are as follows:

ManagedCSid(String __gc* pszAccountName, String __gc* pszSystem);
ManagedCSid(String __gc* pszAccountName);
We recall that the optional __gc keyword signifies that the parameters are __gc pointers. It is not required because String is a __gc type and a pointer to it is a __gc pointer by default. The __gc keyword can be used for clarity.

The implementations of these constructors call init(), which does the real work. The first constructor passes its arguments to init().

ManagedCSid::ManagedCSid(String __gc* pszAccountName, String __gc* pszSystem)
{
 init(pszAccountName, pszSystem);
}
The second constructor, which takes only one argument, passes it as the first argument to init() and passes String::Empty as the second argument of init(). String::Empty is the empty string.

ManagedCSid::ManagedCSid(String __gc* pszAccountName)

{

 init(pszAccountName, String::Empty);

}

It remains to define the init() function. The declaration of init() is:

void ManagedCSid::init(String __gc* pszAccountName, String __gc* pszSystem);

Data Marshaling

Within the definition of this function, we need to do data marshaling that converts the String arguments to LPCTSTR ones which are eventually passed to the constructor being wrapped. For each argument, we need to copy the contents of the string from the common language runtime heap into the C++ runtime heap and return a pointer to the string.

To do this, we can use classes provided as part of the .NET Framework class library. The System::Runtime::InteropServices::Marshal class contains a collection of methods for handling tasks such as managed to unmanaged type conversions, unmanaged memory allocation, and copying unmanaged memory blocks.

The static methods defined in the Marshal class provide a convenient way to convert between managed and unmanaged data. In general, the methods in the Marshal class return an IntPtr. This is a common language runtime pointer.

One approach is to use the ToPointer() member function of the IntPtr class. This returns a pointer of type System::Void ** that can be cast to char * as follows:

String __gc* str = S"managed string";

char __nogc* pStr = static_cast<char*>(Marshal::StringToHGlobalAnsi(str).ToPointer());

Catching Exceptions

We need to ensure that any exceptions that could be raised are caught. This is an example of defensive programming that is generally considered good practice, especially for memory issues. This can be done by writing a member function of the ManagedCSid wrapper class that has a try/catch block as follows:

LPCTSTR ManagedCSid::GetUnmanagedString(String __gc* s)
{
 LPCTSTR lstr = 0;
 try
 {
 // copies the contents of s into Windows global heap,
 // converting to ANSI format on-the-fly if required.
 // It also allocates the required native heap memory.
 lstr = static_cast<LPCTSTR>(const_cast<void*>(static_cast<const void*>(Marshal::StringToHGlobalAuto(s))));
 }
 // s is 0
 catch (ArgumentException* e)
 {
 // exception handling code
 }
 // could not allocate enough memory on native heap
 catch (OutOfMemoryException* e)
 {
 // exception handling code
 }
 return lstr;

}

The casts on the result of Marshal::StringToHGlobalAuto convert an IntPtr to a LPCTSTR. The converse casts are used below in the call to Marshal::FreeHGlobal when the memory is deallocated.

If the call to StringToHGlobalAuto fails, it raises an exception, which GetUnmanagedString handles correctly via a try/catch block. Now that we have described data marshaling, we can implement the helper function init().

void ManagedCSid::init(String __gc* pszAccountName, String __gc* pszSystem)

{

 LPCTSTR _pszAccountName = ManagedCSid::GetUnmanagedString(pszAccountName);

 LPCTSTR _pszSystem = 0;

 if (!(String::Compare(pszSystem, String::Empty)))

 {

 LPCSTR _pszSystem = GetUnmanagedString(pszSystem);

 }

 m_pCSid = new CSid(_pszAccountName, _pszSystem);

 // clean up
 Marshal::FreeHGlobal(static_cast<IntPtr>(const_cast<void*>(static_cast<const void*>(_pszAccountName))));

 _pszAccountName = 0;

 if (!(String::Compare(pszSystem, String::Empty)))

 {

 Marshal::FreeHGlobal(static_cast<IntPtr>(const_cast<void*>(static_cast<const void*>(_pszSystem))));

 _pszSystem = 0;

 }

}

Once we have converted the managed string arguments to their unmanaged counterparts, the constructor of the class being wrapped is called.

m_pCSid = new CSid(_pszAccountName, _pszSystem);

After we are done using the unmanaged strings, we return the memory allocated to the Windows global heap using the FreeHGlobal() function. This is a static member function of the Marshal class.

2.4.2 The explicit Keyword

The explicit keyword in unmanaged C++ is used to declare a single-argument constructor that can only be called explicitly. In our example, there is a constructor for CSid that can be called just with the pszAccountName parameter because its second parameter has a default value of 0:

explicit CSid(LPCTSTR pszAccountName, LPCTSTR pszSystem = 0);

We need to write a managed proxy of the constructor above that creates an instance of ManagedCSid from an object of String. The proxy constructor should also only be able to be called explicitly; however, the explicit keyword is not part of Managed Extensions.

Managed Extensions provides convert-from operators: static unary member functions that convert from an object of some class to an object of the class in which the operator is defined. The user can choose to name the operator either op_Explicit or op_Implicit.

This affects how the operator can be called by clients of the wrapper class that are written in other languages such as Visual Basic and Visual C#. The operator op_Explicit is for explicit calls only and should be used when there can be a loss of information; for example, a conversion from double to int. The operator op_Implicit is for implicit and explicit calls and should be used when there cannot be a loss of information.

In this example, we use the op_Explicit form of the convert-to operation. This ensures that the proxy constructor can only be called explicitly by clients of the wrapper class, as required.

static ManagedCSid __gc* op_Explicit(String __gc* pszAccountName);
ManagedCSid __gc* ManagedCSid::op_Explicit(String __gc* pszAccountName)
{
 ManagedCSid __gc* t = new ManagedCSid(pszAccountName);
 return t;
}
Here, t is created on the common language runtime heap and is therefore accessible even when this function returns.

If the unmanaged unary constructor had not been declared explicit, it could be used implicitly within Managed Extensions code only. Other common language specification (CLS)-compliant languages cannot use unary constructors for implicit conversions. For interoperability reasons, you should wrap each unary-argument constructor within the class it is defined in with a suitable conversion operator.

For interoperability with .NET Framework-compliant languages that do not use op_Explicit we need to provide a similar member function called FromString as follows:

static ManagedCSid __gc* FromString(String __gc* pszAccountName);
ManagedCSid __gc* ManagedCSid::FromString(String __gc* pszAccountName)
{
 ManagedCSid __gc* t = new ManagedCSid(pszAccountName);
 return t;
}
2.4.3 Destructor

The destructor in CSid can be wrapped by including a destructor in ManagedCSid that calls it.

~ManagedCSid() {m_pCSid ->~CSid();}

The implementation of the destructor in Managed Extensions uses the function Finalize that is called before the object is garbage collected by the runtime on a separate thread from execution. It is a protected virtual member of System::Object. The order in which Finalize is called for objects is unpredictable.

2.5 Techniques for Member Functions

In this section we discuss wrapping techniques that are applicable only to member functions.

2.5.1 Default Arguments

Functions with default arguments are also not compliant with the common language specification (CLS). We cannot wrap member functions with them directly. We use function overloading to achieve the effect of the default argument. For example, the following function:

f(int arg1, int arg2 = 10);

has the default parameter, arg2 = 10. We rewrite it as follows:

f(int arg1, int arg2);

f(int arg1) { f(arg1, 10); }

2.5.2 Properties

In unmanaged C++, it is common practice to define accessor member functions. In Managed Extensions for C++, this is concept is formalized through properties.

The __property keyword is used to distinguish a property member function from an ordinary one. The user defines get and set methods which implement the property.

In objects of the class, a property provides what appears to be an ordinary data member that can be written or read using the same syntax as a data member.

CSid provides the following three methods for which we can write proxy properties in Managed Extensions for C++:

 LPCTSTR AccountName() const;
 LPCTSTR Domain() const;
 LPCTSTR Sid() const;
Within the ManagedCSid class, we declare the AccountName property as follows:

__property String __gc* get_AccountName();

The property is called AccountName; however, when declaring the method, we prefix this name with get_ to specify that this is a get property that returns a value. Similarly, the set method sets a value and has the name of the property prefixed by set_.

The definition of the AccountName property is:

String __gc* ManagedCSid::get_AccountName()
{
 return (m_pCSid->AccountName());
}
It consists of calling the underlying CSid::AccountName() method. What is of interest here is the fact that CSid::AccountName() returns a string of type LPCTSTR, that is, an unmanaged type. However, the return type of the AccountName property is String __gc*, which is of course managed. How is this possible?

A return statement effectively initializes an unnamed variable of the return type. The String class provides an overloaded constructor which initializes a new instance of the String object with characters copied from its argument.

String(char __nogc*)
or

String(wchar_t __nogc*)

for wide character strings. This means that you can initialize an instance of the String object with an array of unmanaged characters without explicitly copying the characters into the String.

In an object of ManagedCSid, code can access the value of AccountName as though it had been declared in ManagedCSid as a data member of type String __gc*.

Similarly, the definitions and declarations of the Domain and Sid properties follow. They allow objects of ManagedCSid to have code that can access the values of Domain and Sid as though they had been declared in ManagedSid.

// Domain
__property String __gc* get_Domain();
String __gc* ManagedCSid::get_Domain()
{
 return (m_pCSid->Domain());
}
// Sid
__property String __gc* get_Sid();
String __gc* ManagedCSid::get_Sid()
{
 return (m_pCSid->Sid());
}
2.6 Binary Operators

CSid also provides binary comparison operators, for example:

bool operator==(const CSid &rhs) const
bool operator==(const SID &rhs) const
How do we wrap these? The runtime supports a number of operators which can be implemented through Managed Extensions for C++. They are defined by users as ordinary static methods with distinguished names. Most compilers that target the runtime, including the C++ compiler, map these specially named methods into infix operators for their defining class.

For example, the runtime provides the op_Equality and op_Inequality operators which allow the comparison of their respective operands. These can be either called directly or using the == and != infix notation.

The following example defines the op_Equality operator for objects of class S. It is good practice for interoperability with other .NET Framework-compliant languages to provide a function called Equals that overrides System::Object::Equals.

bool Equals(Object * rhs)
{
 S* s = dynamic_cast<S *>(rhs);
 if(!s) return false;
 return (s->i == i); // == here is equality on integers. See S below.
}
public __gc class S
{
public:
 static bool op_Equality(S * lhs, S * rhs) // maps to operator== in a call
 {
 return (lhs->Equals(rhs));
 }
private:
 int i;
};
int main()
{
S __gc* s = __gc new S;
S __gc* t = __gc new S;
// call S::op_Equality using infix notation
 if (*s == *t)

 cout << "s == t" << endl;

// We can also call S::op_Equality directly too
 if (S::op_Equality(*s, *t))
 cout << "s == t" << endl;
 return 0;

}

For ManagedCSid, we declare a managed equality operator which wraps the CSid::operator== as shown here:

bool Equals(Object * rhs)
{
 ManagedCSid * s = dynamic_cast<ManagedCSid *>(rhs);
 if(!s) return false;
 return (s->m_pCSid == m_pCSid); // calls CSid::operator==
}
static bool ManagedCSid::op_Equality(ManagedCSid * lhs, ManagedCSid * rhs)
{
 return (lhs->Equals(rhs));
};
It is also good practice to override the GetHashCode member function of System::Object. This keeps Equals and GetHashCode in agreement for the runtime. To do this, we can use the GetPSID() member function of CSid that returns a pointer to the underlying SID struct.

int GetHashCode()
{
 return(reinterpret_cast<int>(m_pCSid->GetPSID()));
};
2.7 Assignment Operators and Copy Constructors

There is no direct way to wrap the unmanaged assignment operators and copy constructors of CSid because the wrapper class is a __gc type and its objects cannot be passed by value. We can only refer to a member of such an object by dereferencing a __gc pointer to it.

A solution is to write member functions of ManagedCSid that have the required effects.

ManagedCSid should implement the ICloneable interface to provide the equivalent of a copy constructor for managed clients. The declaration of ManagedCSid should begin:

__gc ManagedCSid : public ICloneable {

public:

virtual Object * Clone() // implements a "copy constructor"
{

ManagedCSid * m = new ManagedCSid;

m -> m_pCSid = m_pCSid; //calls CSid copy constructor CSid(const CSid &rhs);

// "deep copy" other data members from this ->... to m ->...

...

return m;

};

The copy constructor Clone cannot be invoked in the same way as a C++ one. We need to write:

ManagedCSid * m = MyMCSid -> Clone();

for example to produce a copy of the ManagedCSid object pointed to by MyMCSid. This is why we called it a managed equivalent of the copy constructor.

This is an implementation of the assignment operator.

protected:

virtual ManagedCSid * Assign(ManagedCSid * rhs)

{

if(this != rhs)

{

m_pCSid = rhs -> m_pCSid; // calls CSid &operator=(const CSid &rhs);

// "deep copy" other data members from rhs -> ... to this -> ...

}

return this;

};
Similarly, the assignment operator could be invoked as follows:

MyMCSid->Assign(rhs);

2.8 Appendix: Sample Code

The complete code for the example discussed in Part I is collected here.

For more information on the CSid class, see CSid Class in the ATL Reference.

// wrappingClass1.cpp

// compile with: /clr /LD

#using <mscorlib.dll>

#include <atlsecurity.h>

using namespace System;

using System::Runtime::InteropServices::Marshal;

public __gc class ManagedCSid : public ICloneable

{

public:

ManagedCSid(String *, String *);

ManagedCSid(String *);

ManagedCSid() {m_pCSid = 0;}

LPCTSTR GetUnManagedString(String *);

void init(String *, String *);

static ManagedCSid * op_Explicit(String * pszAccountName)

{

ManagedCSid * t = new ManagedCSid(pszAccountName);

return t;

}

ManagedCSid * FromString(String * pszAccountName)

{

ManagedCSid * t = new ManagedCSid(pszAccountName);

return t;

}

~ManagedCSid()

{

m_pCSid -> ~CSid();

}

__property String * get_AccountName()

{

return m_pCSid -> AccountName();

}

__property String * get_Domain()

{

return m_pCSid -> Domain();

}

bool Equals(Object * rhs)

{

ManagedCSid * s = dynamic_cast<ManagedCSid *>(rhs);

if (!s) return false;

return (s -> m_pCSid == m_pCSid);

}

static bool op_Equality(ManagedCSid * lhs, ManagedCSid * rhs)

{

return (lhs -> Equals(rhs));

}

int GetHashCode()

{

return reinterpret_cast<int>(m_pCSid -> GetPSID());

}

virtual Object * Clone()

{

ManagedCSid * m = new ManagedCSid;

m -> m_pCSid = m_pCSid;

return m;

}

protected:

virtual ManagedCSid * Assign(ManagedCSid * rhs)

{

if(this != rhs)

{

m_pCSid = rhs -> m_pCSid;

}

return this;

}

private:

CSid __nogc * m_pCSid;

};

ManagedCSid::ManagedCSid(String * pszAccountName, String * pszSystem)

{

init(pszAccountName, pszSystem);

}

ManagedCSid::ManagedCSid(String * pszAccountName)

{

init(pszAccountName, String::Empty);

}

LPCTSTR ManagedCSid::GetUnManagedString(String * s)

{

LPCTSTR lstr = 0;

try

{

lstr = static_cast<LPCTSTR>(const_cast<void*>(static_cast<const void*>(Marshal::StringToHGlobalAuto(s))));

}

catch(ArgumentException * e)

{

// handle the exception

}

catch (OutOfMemoryException * e)

{

// handle the exception

}

return lstr;

}

void ManagedCSid::init(String * pszAccountName, String * pszSystem)

{

LPCTSTR _pszAccountName = ManagedCSid::GetUnManagedString(pszAccountName);

LPCTSTR _pszSystem = 0;

if (!(String::Compare(pszSystem, String::Empty)))

{

LPCSTR _pszSystem = GetUnManagedString(pszSystem);

}

m_pCSid = new CSid(_pszAccountName, _pszSystem);

Marshal::FreeHGlobal(static_cast<IntPtr>(const_cast<void*>(static_cast<const void*>(_pszAccountName))));

_pszAccountName = 0;

if (!(String::Compare(pszSystem, String::Empty)))

{

Marshal::FreeHGlobal(static_cast<IntPtr>(const_cast<void*>(static_cast<const void*>(_pszSystem))));

_pszSystem = 0;

}

}

3 Part II: PInvoke and COM Interoperability

Part II of the Migration Guide discusses the use of Platform Invocation Services, or PInvoke, provided by the .NET Framework common language runtime. PInvoke provides a direct way to use C-style functions in existing native DLLs in a managed application. In contrast to languages like C# and Visual Basic where explicitly using the PInvoke mechanism is the only option, developers using Managed Extensions for C++ generally do not have to do this extra work and can just call unmanaged APIs by including the header file and linking with the import library. This feature is called "It Just Works," or IJW. Both IJW and the DLLImport PInvoke attribute use the same underlying mechanism so it is useful to understand that mechanism in some detail. In addition, there are some cases where explicitly using the PInvoke mechanism might be beneficial.

Managed Extensions can also be used to directly wrap the underlying C++ class of a COM object. This can provide better performance than using the COM interface and a runtime callable wrapper (RCW) because there can be less interoperability overhead and much closer control of how members are wrapped. For some COM objects, it may not be possible to use the Type Library Importer (Tlbimp.exe) to create an assembly for the COM object, and using Managed Extensions to write a custom wrapper provides a solution for this.

A common issue with PInvoke and COM interoperability is that of conflicting names. Two scenarios in which they arise are covered: conflicts between names defined in native header files and assemblies in the same application; and conflicts arising from macro expansions by the preprocessor. Several techniques are given that can prevent these conflicts from occurring.

3.1 Platform Invocation Services

The common language runtime provides Platform Invocation Services, or PInvoke, that enables managed code to call C-style functions in native dynamic-linked libraries (DLLs). The same data marshaling is used as for COM interoperability with the runtime and for the "It Just Works," or IJW, mechanism.

An important and unique feature of Managed Extensions for C++ is that you can use unmanaged APIs directly. Data marshaling is handled automatically. If you do not require customized data marshaling, you do not need to use PInvoke.

The samples in this section just illustrate how PInvoke can be used. PInvoke can simplify customized data marshaling because you provide marshaling information declaratively in attributes instead of writing procedural marshaling code.

PInvoke and the DllImport Attribute

The following example shows the use of PInvoke in a Managed Extensions for C++ program. The native function puts is defined in msvcrt.dll. The DllImport attribute is used for the declaration of puts.

Example

#using <mscorlib.dll>

using namespace System;

using namespace System::Runtime::InteropServices;

[DllImport("msvcrt", CharSet=CharSet::Ansi)]

extern "C" int puts(String *);

int main()

{

 String * pStr = S"Hello World!";

 puts(pStr);

}

Output

Hello World!

The following version of the same example shows IJW in action.

Example

#using <mscorlib.dll>

using namespace System;

using namespace System::Runtime::InteropServices;

#include <stdio.h>

int main()

{

 String * pStr = S"Hello World!";

 char* pChars = (char*)Marshal::StringToHGlobalAnsi(pStr).ToPointer();

 puts(pChars);

 Marshal::FreeHGlobal(pChars);

}
Output

Hello World!

The example illustrates some of the advantages and disadvantages of both methods.

Advantages of IJW

· There is no need to write DLLImport attribute declarations for the unmanaged APIs the program uses. Just include the header file and link with the import library.

· The IJW mechanism is slightly faster (for example, the IJW stubs do not need to check for the need to pin or copy data items since that is done explicitly by the developer).

· It clearly illustrates performance issues. In this case, the fact that you are translating from a Unicode string to an ANSI string and that you have an attendant memory allocation and deallocation. For example, in this case, a developer writing the code using IJW would realize that calling _putws and using PtrToStringChars would be better for performance.

· If you need to call many unmanaged APIs using the same data, marshaling it once up front and passing the marshaled copy around is much more efficient than re-marshaling every time.

Disadvantages of IJW

· Marshaling needs to be specified explicitly in code rather than by attributes (which in many cases like this one have suitable defaults).

· The marshaling code is inline, where it is more invasive in the flow of the application logic.

· Since the explicit marshaling APIs return IntPtr types for 32-bit to 64-bit portability, extra ToPointer calls need to be used.

Like many places in Managed Extensions, the specific method exposed by Managed Extensions is the more efficient, explicit method, at the cost of some additional complexity.

If the application uses mainly unmanaged data types or if it calls more unmanaged APIs than .NET Framework APIs, using the IJW feature will generally be preferable. To call an occasional unmanaged API in a mostly managed application, the choice is more subtle.

Marshaling Arguments
With PInvoke, no marshaling is required between managed and C++ native primitive types with the same form. For example, no marshaling is required between Int32 and int, and Double and double.

Marshaling is required for types that do not have the same form. This includes char, string, and struct types. The following table shows the mappings used by the marshaler for various types.

	wtypes.h
	C++
	Managed Extensions
	Common language runtime

	HANDLE
	void *
	void *
	IntPtr, UIntPtr

	BYTE
	unsigned char
	unsigned char
	Byte

	SHORT
	short
	short
	Int16

	WORD
	unsigned short
	unsigned short
	UInt16

	INT
	int
	int
	Int32

	UINT
	unsigned int
	unsigned int
	UInt32

	LONG
	long
	long
	Int32

	BOOL
	long
	bool
	Boolean

	DWORD
	unsigned long
	unsigned long
	UInt32

	ULONG
	unsigned long
	unsigned long
	UInt32

	CHAR
	char
	char
	Char

	LPSTR
	char *
	String * [in], StringBuilder * [in, out]
	String [in], StringBuilder [in, out]

	LPCSTR
	const char *
	String *
	String

	LPWSTR
	wchar_t *
	String * [in], StringBuilder * [in, out]
	String [in], StringBuilder [in, out]

	LPCWSTR
	const wchar_t *
	String *
	String

	FLOAT
	float
	float
	Single

	DOUBLE
	double
	double
	Double

The marshaler automatically pins memory allocated on the runtime heap if its address is passed to an unmanaged function. Pinning prevents the garbage collector from moving the allocated block of memory during compaction.

In the example shown earlier in this topic, the CharSet parameter of DllImport specifies how managed Strings should be marshaled; in this case, they should be marshaled to ANSI strings for the native side.

Marshaling information for individual arguments of a native function can be specified using the MarshalAs attribute. There are several choices for marshaling a String * argument: BStr, ANSIBStr, TBStr, LPStr, LPWStr, and LPTStr. The default is LPStr.

Example

#using <mscorlib.dll>

using namespace System;

using namespace System::Runtime::InteropServices;

[DllImport("msvcrt", EntryPoint="puts")]

extern "C" int puts([MarshalAs(UnmanagedType::LPWStr)] String *);

int main()

{

 String * pStr = S"Hello World!";

 puts(pStr);

}

Output

H

In this example, the string is marshaled as a double-byte Unicode character string, LPWStr. The output is just the first letter of Hello World! because the second byte of the marshaled string is null, and puts interprets this as the end-of-string marker.

The MarshalAs attribute is in the System::Runtime::InteropServices namespace. The attribute can be used with other data types such as arrays.

PInvoke with Windows APIs

PInvoke is also convenient for calling functions in Windows.

In this example, a Managed Extensions program interoperates with the MessageBox function that is part of the Win32 API.

Example

#using <mscorlib.dll>

using namespace System;

using namespace System::Runtime::InteropServices;

typedef void* HWND;

[DllImport("user32", CharSet=CharSet::Ansi)]

extern "C" int MessageBox(HWND hWnd, String * pText, String * pCaption, unsigned int uType);

int main()

{

 String * pText = S"Hello World! ";

 String * pCaption = S"PInvoke Test";

 MessageBox(0, pText, pCaption, 0);

}

The output is a message box with the title PInvoke Test and the text Hello World! in it.

The marshaling information is also used by PInvoke to look up functions in the DLL. In user32.dll there is in fact no MessageBox function, but CharSet=CharSet::Ansi enables PInvoke to use MessageBoxA, the ANSI version, instead of MessageBoxW, which is the Unicode version. In general, using Unicode versions of unmanaged APIs should be preferred because that eliminates the translation overhead from the native Unicode format of .NET Framework string objects to ANSI.

When Not to Use PInvoke

Using PInvoke is not suitable for all C-style functions in DLLs. For example, suppose there is a function MakeSpecial in mylib.dll declared as follows.

char * MakeSpecial(char * pszString);

If we use PInvoke in a Managed Extensions application, we might write something similar to:

[DllImport("mylib")]

extern "C" String * MakeSpecial([MarshalAs(UnmanagedType::LPStr)] String *);

The difficulty here is that we cannot delete the memory for the unmanaged string returned by MakeSpecial. Other functions called via PInvoke return a pointer to an internal buffer that does not need to be deallocated by the user. In this case, using the IJW feature is the obvious choice.

Performance Considerations

PInvoke has an overhead of between 10 and 30 x86 instructions per call. In addition to this fixed cost, marshaling creates additional overhead. There is no marshaling cost between blittable types that have the same representation in managed and unmanaged code. For example, there is no cost to translate between int and Int32.

For higher performance, it may be necessary to have fewer PInvoke calls that marshal as much data as possible, rather than have more calls that marshal less data per call. Or somewhat more memorably: prefer a chunky over a chatty API.

3.2 Accessing COM Objects from the Runtime

With the .NET Framework Type Library Importer tool (Tlbimp.exe), you can usually convert type definitions found in a COM type library into runtime metadata for equivalent types in a common language runtime assembly. It may not be possible to do this if the COM object's interface does not follow the COM rules.

Wrapping with a Runtime Callable Wrapper

When a .NET Framework client activates a COM object, the common language runtime generates a Runtime Callable Wrapper (RCW) as described in the .NET Framework Developer's Guide.

A RCW wraps a COM object for a managed client.

[image: image1.png]

The wrapper is a managed proxy class for the COM object that provides data marshaling. For example, if a COM method returns a result with type BSTR, the RCW would convert it to type String *. This provides a way to reuse COM objects in a .NET Framework project. The topic Marshaling Data with COM Interop in the .NET Framework Developer's Guide has more details on data marshaling between COM and .NET Framework types.

Wrapping with Managed Extensions

However, using Tlbimp.exe may not be the best approach for some applications. It may not work on automation-compliant COM objects whose interfaces do not follow the COM rules strictly. It may also not work for more general forms of COM objects that have custom marshalers.

You may want to customize the interfaces exposed to the runtime instead of the one the RCW provides. A customized wrapper can yield a richer object model, and better marshaling performance.

Managed Extensions for C++ enables you to write a wrapper class for an underlying native C++ class. A .NET Framework client can then reuse the functionality of the COM object via the wrapper. You can customize the wrapper more directly and with more control than modifying an assembly generated by the Type Library Importer (Tlbimp.exe) generated with interop attributes. The topic Customizing Standard Wrappers in the .NET Framework Developer's Guide discusses the use of interop attributes.

Wrapping the underlying object enables you to decide which members of the class to wrap, and makes the overhead of the COM interface, RCW, and data marshaling between them unnecessary.

A Managed Extensions class wraps the underlying COM object for a managed client.

[image: image2.png]Unmanaged Code.

Natveclient exe

—

[Fanaged Extensions Wrapper |,

}

[Underlying Native G Class

JrnlPost: An Example of Wrapping with Managed Extensions

The Managed Extensions sample JrnlPost illustrates using Managed Extensions to write a wrapper class for an underlying COM object. In this sample, ComJEPost is a COM object implemented in native C++. It provides a COM interface to the native C++ class called JEPost. The class netJEPost is a Managed Extensions class that directly wraps JEPost.

The declaration of netJEPost contains a native pointer pJEpost to an instance of the native C++ class JEPost.

public __gc class netJEPost {

private:

JE::JEPost* pJEpost;
// pointer to unmanaged business logic class.

public:

BOOL OpenTransaction(String* strDescr);

BOOL AddEntry(String* strGLAccount, float fAmt);

BOOL Verify();

BOOL Commit();

void Abort();

netJEPost();

~netJEPost();

};

The constructor for netJEPost wraps the constructor of the native class:

netJEPost::netJEPost() {

pJEpost = new JE::JEPost;
// create an instance of our business logic class

}

The underlying native C++ class JEPost contains a member function defined as follows:

BOOL JEPost::AddEntry(const wchar_t *wcszGLAccount, float fAmt) {

// is the account number too long?

if ((!wcszGLAccount) || ((wcslen(wcszGLAccount) + 1) > ACCOUNTSZ)) {

::MessageBox(NULL, "Invalid GL Account number!", "AddEntry Error", MB_OK);

return FALSE;

// yes, early out

}

if (this->bTransactionIsOpen == FALSE) {
// has the transaction been opened?

::MessageBox(NULL, "Must open transaction first!", "AddEntry Error", MB_OK);

return FALSE;

// no, early out

}

else {

// yes, add the entry

wcscpy(JournalEntries[nNumEntries].wcszGLAccount, wcszGLAccount);

JournalEntries[nNumEntries].fAmount = fAmt;

nNumEntries++;

return TRUE;

}

}

The AddEntry member function is wrapped in netJEPost by the following member function of the __gc class netJEPost. Note that the native wchar_t * type is marshaled as a String *, and that the native pointer pJEpost is used to access the corresponding member function AddEntry of the native class instance of JEPost.

BOOL netJEPost::AddEntry(String* strGLAccount, float fAmt) {

// Convert the managed string that comes from our managed clients to an unmanaged

// wchar_t * that will be passed to our native class.

System::IntPtr intptrGLAccount =

System::Runtime::InteropServices::Marshal::StringToHGlobalAuto(strGLAccount);

// Call the AddEntry method on our instantiation of the native business

// logic class.

BOOL bRet = pJEpost->AddEntry((wchar_t*) intptrGLAccount.ToPointer(), fAmt);

// When we converted strDescr, memory was allocated by the StringToCoTaskMemAuto

// function. We now call FreeHGlobal to free the allocated memory.

System::Runtime::InteropServices::Marshal::FreeHGlobal(intptrGLAccount);

return bRet;

}

For more details on wrapping native C++ classes, see Migration Guide Part I: Introduction to Wrapping C++ Classes.

3.2.1 Interoperability Overheads

The two approaches described in Accessing COM Objects from the Runtime for bringing the functionality of a COM object to the common language runtime have different runtime performance. The use of Tlbimp.exe and a runtime callable wrapper results in two levels of wrapping: the COM interface for the underlying C++ class; and the runtime callable wrapper. Using these wrappers may also involve marshaling data more than once.

In contrast, using Managed Extensions to write a custom wrapper for the underlying C++ class involves one level of wrapping and may require less marshaling of data. This difference may be significant for high-performance applications.

Overheads for Managed Extensions

In JrnlPost: An Example of Wrapping with Managed Extensions, the managed AddEntry member function that wraps its native counterpart involves a call via a function pointer.

BOOL bRet = pJEpost->AddEntry((wchar_t*) intptrGLAccount.ToPointer(), fAmt);

In the current release of Visual C++ .NET, for any call to a function via a function pointer the compiler does not have information about whether the function is a native or managed function. It generates code that assumes the function is a native function. Part of this code is a thunk that implements the transition from managed to native code at run time. Processing the thunk at run time causes additional instructions to be executed.

The call to the native AddEntry above causes the compiler to generate a thunk for the managed to native transition.

Thunks are also generated for all calls to functions via a function pointer. This includes calls to virtual functions of native classes, and indirect function calls.

Programming Heuristics for High Performance

If high performance is important for your application, you could consider wrapping the C++ class underlying a COM object with a Managed Extensions wrapper class. Writing a custom wrapper class enables you to control very closely which members of the native class are wrapped and to fine tune data marshaling.

You can analyze the performance of the application to identify interoperability overheads. If a call of a wrapped function requires optimizing because of interoperability overheads, the native counterpart can be rewritten as a managed function. If the call changes data members, the results can be marshaled and assigned to their corresponding native data members in the C++ object.

For the call above, you could write a managed version of AddEntry that would be declared as:

BOOL AddEntry(String* strGLAccount, float fAmt);

Calling AddEntry can change the values of data members. For example, a managed data member corresponding to nNumEntries could be incremented. You would need to ensure that the native nNumEntries is also incremented. Other data types may require you to marshal managed data to native data before the assignment is made.

This technique selectively reduces overhead by decreasing data marshaling calls and the number of thunks generated.

3.3 Naming Conflicts

We discuss two ways in which naming conflicts can arise when migrating native C++ code to the common language runtime, and ways to anticipate them.

· Ambiguous References

· Macros and the Preprocessor

3.3.1 Ambiguous References

Sometimes the names of the .NET Framework Library classes, interfaces, or members are the same as those defined in commonly used header files such as windows.h.

This can lead to naming conflicts or ambiguities in applications that involve interoperating with native code. The following example demonstrates an ambiguous name.

Example

#using <mscorlib.dll>

using namespace System;

#include <windows.h>

int main()

{

 return 0;

}

In the above example, the using declaration in using namespace System; makes names from the System namespace accessible to the entire program. One of these names is IServiceProvider. However, windows.h indirectly contains #include servprov.h, which has the following declaration.

typedef interface IServiceProvider IServiceProvider;

Since the using declaration precedes the #include directive, the name IServiceProvider becomes ambiguous.

Solving Ambiguous References

One way to overcome this problem is to include the unmanaged headers first, before any managed using declarations. In this order, the compiler can process the unmanaged headers first and the ambiguity does not occur unless the code uses one of the symbols.

Example

#include <windows.h>

#using <mscorlib.dll>

using namespace System;

int main()

{

// System::IServiceProvider or IServiceProvider via windows.h?

IServiceProvider isp;

 return 0;

}

To solve this, you can use fully qualified names for managed symbols.

Example

#include <windows.h>

#using <mscorlib.dll>

int main()

{

System::IServiceProvider __gc* isp1; // fully qualified name

// or

::IServiceProvider __nogc * isp2; // using directive

return 0;

}

As can be seen, we have used a fully qualified name, System::IServiceProvider, to specify the managed name. Generally, it is preferable not to make all names in a namespace available with a using namespace declaration.

3.3.2 Macros and the Preprocessor

Another area where identical symbol names between the .NET Framework and commonly used header files can introduce undesirable effects involves macros and the preprocessor, as shown in the following example.

Example

#include <windows.h>

#using <mscorlib.dll>

#using <System.Windows.Forms.dll>

int main()

{

System::Windows::Forms::MessageBox::Show("Hello, World!");

 return 0;

}

Here, we are using the MessageBox class as provided by the .NET Framework, which is functionally identical to the MessageBox macro defined in Winuser.h as follows:

#ifdef UNICODE

#define MessageBox MessageBoxW

#else

#define MessageBox MessageBoxA

#endif // !UNICODE

When we use the /E compiler option that sends the preprocessor output to stdout, we see the following output after the macro expansions.

#using <mscorlib.dll>

#using <System.Windows.Forms.dll>

int main()

{

System::Windows::Forms::MessageBoxA::Show("Hello, World!");

 return 0;

}

This shows that the preprocessor simply performs textual substitutions and disregards that MessageBox is part of the System::Windows::Forms namespace. The .NET Framework does not include a class called MessageBoxA and so the compiler generates an error.

Solving Macro Expansion Conflicts

To solve this issue, you can use #undef to prevent name conflicts, as shown below.

Example

#include <windows.h>

#using <mscorlib.dll>

#using <System.Windows.Forms.dll>

#ifdef MessageBox

#undef MessageBox

#endif

int main()

{

System::Windows::Forms::MessageBox::Show("Hello, World!");

 return 0;

}

4 Conclusion

Managed Extensions for C++ code enables the functionality of existing unmanaged code to be used in the common language runtime by clients of the managed classes. The clients can be written in any .NET Framework-compliant language, such as Managed Extensions for C++, Visual Basic, and Visual C#.

This guide provides an introduction to techniques for interoperating with native C++ code in .NET Framework applications via Managed Extensions for C++.

Part I of this guide is an introduction to techniques for wrapping unmanaged C++ classes with Managed Extensions for C++ classes that act as proxies.

We have discussed typical techniques for wrapping constructors, the destructor, member functions, binary operators, and assignment and copy constructors. Techniques for wrapping virtual functions, and wrapping in the presence of inheritance are not covered here. The actual techniques used will depend on the unmanaged C++ class that is being wrapped, and may differ from those discussed here.

Part II discusses the use of Platform Invocation Services, or PInvoke, provided by the runtime. PInvoke provides a direct way to use functions in existing native C++ DLLs in a managed application written with Managed Extensions for C++.

Managed Extensions can also be used to directly wrap the underlying C++ class of a COM object. This can provide better performance than using the COM interface and a runtime callable wrapper because there can be less interoperability overhead and much closer control of how members are wrapped. For some COM objects, it may not be possible to use the Type Library Importer (Tlbimp.exe) to create an assembly for the COM object, and using Managed Extensions to write a custom wrapper provides a solution for this.

A common issue with PInvoke and COM interoperability is that of conflicting names. Two scenarios in which they arise have been mentioned: conflicts between names defined in native header files and assemblies in the same application; and conflicts arising from macro expansions by the preprocessor. Some techniques were given that can prevent these conflicts from occurring.

This guide has discussed typical techniques. The actual techniques used will depend on the functions in the native DLLs and the COM objects, and may differ from those presented.

5 Reference

Microsoft Corporation: Managed Extensions for C++ Specification

