

 Volume 8, NuVolume 8, NuVolume 8, NuVolume 8, Nummmmber 6 ber 6 ber 6 ber 6 June 2004 June 2004 June 2004 June 2004

IINN TTHHIISS IISSSSUUEE::

 Welcome to the New Journal
Damon Chandler

1

Debugging Aids
Malcolm Smith

2

Extending the IDE: A
TDataSource Component Edi-
tor
Bob Swart

8

Using GDI+, Part II
Damon Chandler

12

This Month’s…

 Developer’s Poll 22

 Contributors 23

A Monthly Publication Offering Tips & Tech-
niques for Borland C++Builder Developer’s Journal

C++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's Journal www.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.org

www.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.org
ISSN 1093ISSN 1093ISSN 1093ISSN 1093----2097209720972097

Welcome to the New Journal
By Damon Chandler

Dear Fellow Developers,

As many of you know, C++ at Borland has been through some dramatic changes in the last year,
changes which have affected us all in one way or another. The Journal is no exception.

The C++Builder Developer's Journal was launched seven years ago by Kent Reisdorph and Tim
Gooch, and it was first published by The Cobb Group. In mid 1999, Kent began producing the Jour-
nal under Reisdorph Publishing, and approximately three years later, these duties were passed to
David Bridges (Bridges Publishing). In December 2003, the production tasks were split: Susan Culli-
gan of Baseline Grid Publications handled the publication details and Dave continued his role as Edi-
tor-in-Chief. Now, as the Journal embarks upon its 85th issue, these duties have passed to me.

I've been with the Journal for nearly four years—Kent brought me on as an author in September of
2000, and Dave kindly promoted me to a Contributing Editor in 2002. As I now take on the task of
production, my goal is not only to keep the Journal alive and strong, but to bring a sense of community
to the project. If you think about it, the Journal's readers comprise one of the largest groups of
C++Builder developers around. We are, in fact, a community of users who are linked by this com-
mon product. I'd like to strengthen this link.

To this end, the Journal has a new, revamped website, http://bcbjournal.org, designed to facilitate
your ability to access the Journal. We've also added online forums, http://forums.bcbjournal.org,
which allow you to and connect with other members of the community, comment on the Journal's
content, and submit article proposals (I sincerely encourage you to publish and share your tips and
techniques by writing for the Journal). The format of the Journal's articles has also been revamped:
Starting with this issue, HTML versions of the articles are available in an easier-to-read print-
preview-type format. The new issues also contain easier-to-read code listings, print-quality screen-
shots, and references to related articles, where applicable. In addition, we've added a new Devel-
oper's Poll that allows you to compare your opinions to those of other members of the community,
and in the works is a Q&A section in which our editors answer reader-submitted questions. Remem-
ber, this is your journal, so any suggestions for improvements are greatly appreciated.

I'd like to personally welcome you to the C++Builder Developer's Journal, and I thank you for your
continued support.

Best regards,

Damon Chandler
Editor-in-Chief
editor@bcbjournal.org

1111 http://bcbjournal.orghttp://bcbjournal.orghttp://bcbjournal.orghttp://bcbjournal.org

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 Chandler, Welcome to the New JournalChandler, Welcome to the New JournalChandler, Welcome to the New JournalChandler, Welcome to the New Journal

Debugging Aids
By Malcolm Smith

ow much time do you
spend debugging your
code? In simple applica-

tions the ratio of debugging to
productive coding is probably
quite low, but as the projects be-
come more and more complex
these figures can change radically.

This article is going to discuss several aids I use
on a daily basis to help resolve logic problems
and often better fine tune certain regions of my
code.

All of the utilities mentioned in this article
rely on an external viewer to capture the output.
I personally use DEBUGVIEW from SYSINTER-
NALS [1]; it’s free and has many great features.
The reason I use this approach is because the
tools presented here are generally used for appli-
cations that have no GUI (such as COM DLLs
and Win32 Service applications). More impor-
tantly, these utilities are often used in multi-
threaded code (GUI and non-GUI) where I need
to see the output immediately rather than during
post-analysis of a generated text file. (The gen-
eration of text-based log files from multiple
threads is a topic for a future article.)

Helper categories
The helpers discussed in this article fall into three
categories:

1. General output

2. Assertion Logging

3. Tracer / Profiler

General Output

The Win32 API already contains a simple debug-
ging method called OutputDebugString() de-
fined as:

VOID OutputDebugString(
 LPCTSTR lpOutputString
);

The purpose of this method is to send a message
to the application or system debugger.

When you run your application through
C++Builder’s F9 option, it is running in the con-
text of a debugger. All calls made to OutputDe-
bugString() will be captured by the IDE’s de-
bugger. The strings are visible in the Event
Viewer, accessible via the View | Debug Win-
dows | Event Viewer menus; or by pressing
Ctrl+Alt+V. When your application is running
outside of the IDE the debug messages can be
captured by external debugging applications
such as DEBUGVIEW.

OutputDebugString() has one serious
drawback—you cannot explicitly pass an AnsiS-
tring. What if you want to output the value of
one or more variables? A first attempt might
come up with something like:

AnsiString Msg = "Value: " + IntToStr(x);
OutputDebugString(Msg.c_str());

The problem with this approach is that you end
up having to write a minimum of two lines of
code and each of those extra variable declara-
tions will pollute your release builds. My re-
placement, known as AnsiOutputDebug(), looks
like this:

inline void __fastcallinline void __fastcallinline void __fastcallinline void __fastcall AnsiOutputDebug(
 AnsiString Message)
{
OutputDebugString(Message.c_str());
}

As you can see, the method takes an AnsiString
parameter which means I get all the benefits of
the various overloaded constructors that it pro-
vides in a single call. The previous example now
becomes:

AnsiOutputDebug("Value: " + IntToStr(x));

The next thing we need to do is remove all traces
of this function call from our product when pro-
ducing a Release Build. This can be accomplished
via some macro magic. The following code snip-
pet turns our OutputDebugString() into a
comment during a Release Build:

H

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 Smith, Debugging AidsSmith, Debugging AidsSmith, Debugging AidsSmith, Debugging Aids

C++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's Journal 2222

#ifdef _DEBUG
 inline void __fastcallinline void __fastcallinline void __fastcallinline void __fastcall AnsiOutputDebug(
 AnsiString Message)
 {
 OutputDebugString(Message.c_str());
 }
#else
 #define mjf_dslash(s) s##s
 #define mjf_comment mjf_dslash(/)

 #define AnsiOutputDebug(p) mjf_comment
#endif

This macro ensures that AnsiOutputDebug() is
used only in Debug Builds. Release Builds will
replace each call to AnsiOutputDebug() with a
comment. Can you work out how?

• AnsiOutputDebug is converted to
mjf_comment

• mjf_comment is converted to mjf_dslash(/)

• mjf_dslash is converted to /##/ which the
pre-processor converts to // (the start of a com-
ment).

I exclusively use AnsiOutputDebug() because I
am assured the code is converted to a comment
when I build my applications in Release Mode.

If you were to run a test project in Release
Mode using OutputDebugString() you will find
the messages are still being generated (you can
see them being captured by DEBUGVIEW). In
time-critical applications I can’t afford to have
the application wasting time doing things that
are not required.

By the way, a small tip for you: If you decide
to use the above-mentioned DEBUGVIEW appli-
cation for all monitoring of debug strings, then
be aware you will not see any output if you run
your application within the IDE. I once was
caught by this while debugging a DLL using a
host application that I was running within the
IDE.

Assertions

An assertion is a runtime check to ensure that a
particular logical state is as expected. Simple ex-
amples include checking that a pointer is not

NULL or that the value of a variable is within cer-
tain limits. If the runtime check evaluates to TRUE
then no action is taken, otherwise the error con-
dition is reported. How this error is reported de-
pends on the approach used.

The standard C/C++ runtime provides as-
sert() as well as the macros _ASSERT() and
_ASSERTE(). I won’t go into all the specifics of
these, but they can be about read at MSDN—see
[2] and [3]. I highly recommend you read these
links to get a full appreciation of the options
available.

So if I’m not going to talk about the above as-
sertion methods, what am I going to talk about?
My own macros of course. I have two macros:
qassert() ("quiet assert") and dassert() ("de-
bugger assert"). Here are the macros including
the conversion to comments in a Release Build:

#ifdef _DEBUG

#define _quiet_assert(__cond, \
 __file, __line) \
 ShowMessage("Condition: " + \
 AnsiString(__cond) + \
 "\nFile: " + AnsiString(__file) + \
 "\nLine: " + IntToStr(__line))

#define qassert(p) ((p) ? (void)0 :
 _quiet_assert(#p, __FILE__, __LINE__))

#define _dbgr_assert(__cond, \
 __file, __line) \
 AnsiOutputDebug("Condition: " + \
 AnsiString(__cond) + \
 ", File: " + AnsiString(__file) + \
 ", Line: " + IntToStr(__line))

#define dassert(p) ((p) ? (void)0 :
 _dbgr_assert(#p, __FILE__, __LINE__))

#else

 #define mjf_dslash(s) s##s
 #define mjf_comment mjf_dslash(/)
 #define qassert(p) mjf_comment
 #define dassert(p) mjf_comment

#endif

In debug builds the qassert() and dassert()
macros are translated to _quiet_assert() and

Smith, Debugging AidsSmith, Debugging AidsSmith, Debugging AidsSmith, Debugging Aids Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004

3333 http://bcbjournal.orghttp://bcbjournal.orghttp://bcbjournal.orghttp://bcbjournal.org

_dbgr_assert(), respectively. You’ll also notice
dassert() makes use of the AnsiOutputDe-
bug() function presented earlier.

The qassert() and dassert() macros are
essentially the same: qassert() is designed to
call ShowMessage() and dassert() calls An-
siOutputDebug(). For this reason I’ll explain
only how qassert() works.

Let’s start with qassert() itself:

#define qassert(p) ((p) ? (void)0 :
 _quiet_assert(#p, __FILE__, __LINE__))

This macro makes use of the ?: operator which
acts as an if-then-else statement. If the expression
(p) is TRUE then (void)0 is selected by the pre-
processor, otherwise _quiet_assert(#p,

__FILE__, __LINE__) is used. The first state-
ment is translated to a no-op and the second
passes p as a literal string to _quiet_assert()
along with the name of the source file and the
current line number. The _quiet_assert()
macro is then translated into a call to ShowMes-
sage().

In many cases I place qassert() calls where
I want nothing more than a message box to be
displayed indicating the failed condition, the
file-name and the line number. This macro is
simple enough for my needs and it saves me
the trouble of adding the extra header and
library dependencies associated with
_ASSERTE().
As for dassert(), I use this when I need to

perform the same kind of assertion checking
in non GUI applications such as COM DLLs
and Win32 Service Applications.
I should point out something very impor-

tant at this stage: assert() will abort your
application after displaying the error condi-
tion. It was designed this way because a pro-
gram's behavior is undefined if the state of the
application is invalid. I prefer to use my
macro and not cause the application to termi-
nate. The biggest reason for this is that I often
have several links to COM objects (or other
resources) and I want to make sure every-
thing is shutdown in a controlled manner.

Tracer / Profiler

Profilers are not actually debugging tools, but
I’ve lumped it into this article because the class I
am about to describe serves the purpose of trac-
ing your code's logic and it provides timing in-
formation for each executed method (or distinct
block of code).

The class is called TTAT (Turn Around Time).
It was born when I needed to track multiple
threads within a DLL to determine where a bot-
tleneck was located. I have used external profil-
ers in the past that did not require manual inser-
tion of method calls or macros into your code but
I have since moved away from them because I
always found that the code executed much
slower than under normal conditions. Since
tracking down issues such as deadlocks is easier
to reproduce when the code is running at full
throttle, I prefer to use my own methods. Listing
A provides the class definition.

Listing Listing Listing Listing AAAA:::: Definition of TTAT

classclassclassclass TTAT
{
privateprivateprivateprivate:

 AnsiString FTitle;
 boolboolboolbool FInclusive;
 DWORD FMinToReport;
 boolboolboolbool FCondition;
 boolboolboolbool FLogInOut;
 boolboolboolbool HRPCAvail;
 LARGE_INTEGER FStart;
 DWORD FTickStart;

publicpublicpublicpublic:
 TTAT(AnsiString ATitle, DWORD MinToReport,
 boolboolboolbool AInclusive, boolboolboolbool ACondition,
 boolboolboolbool ALogInOut = falsefalsefalsefalse);

 ~TTAT(voidvoidvoidvoid);
};

C++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's Journal 4444

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 Smith, DebuggSmith, DebuggSmith, DebuggSmith, Debugging Aidsing Aidsing Aidsing Aids

You’ll notice in Listing A that there are no
member methods to call on this class. So how is it
used? It uses the Resource Acquisition Is Initializa-
tion (RAII) design pattern. Simply put, we use
the constructor and destructor of the class to do
the work for us when it is constructed and de-
structed (goes out of scope) respectively. Con-
sider the following simplified example:

voidvoidvoidvoid ________fastcallfastcallfastcallfastcall TfrmMain::Foo1(voidvoidvoidvoid)
{
TTAT tat("Calling Foo2", 100, falsefalsefalsefalse,
 truetruetruetrue, falsefalsefalsefalse);

// call Foo2() and perform more work
}

voidvoidvoidvoid ________fastcallfastcallfastcallfastcall TfrmMain::Foo2(voidvoidvoidvoid)
{
// a lengthy task occurs here
}

Ignoring the constructor parameters for now
(we’ll come back to them) what we have here is a
class that is constructed at the beginning of
Foo1() and implicitly destructed when this same
method goes out of scope. A second way to use
this class is as follows:

voidvoidvoidvoid ________fastcallfastcallfastcallfastcall TfrmMain::Foo1(voivoivoivoidddd)
{
forforforfor(intintintint i = 0; i < 100; i++)
 {
 ifififif(condition1 == truetruetruetrue)
 {
 TTAT tat("test 1", 100, falsefalsefalsefalse,
 truetruetruetrue, falsefalsefalsefalse);

 // code for test 1 here
 }

 ifififif(condition2 == truetruetruetrue)
 {
 TTAT tat("test 2", 100, falsefalsefalsefalse,
 truetruetruetrue, falsefalsefalsefalse);

 // code for test 2 here
 }
 }
}

In this situation we have created two explicit
blocks of code within the for loop. This con-

struct is useful when you want to isolate certain
sections of code within the same method.

Remember I said this class was helpful for
both tracing code as well as performing timing
operations? Well, in this last example we will be
able to trace the program logic (when condi-
tion1 and condition2 are TRUE) as well as de-
termine the execution time of the code between
the respective curly braces. It’s time to see how
this all works, starting with the constructor.

TTAT(AnsiString ATitle,
 DWORD MinToReport,
 boolboolboolbool AInclusive,
 boolboolboolbool ACondition,
 boolboolboolbool ALogInOut = falsefalsefalsefalse);

ATitle is used to help distinguish one log entry
from another.

MinToReport is the minimum execution time
to report. If the time taken to execute the block of
code is below this value (see the next parameter)
then no log entry would be made. This comes in
handy when profiling multi-threaded code. Just
place these objects in the suspect locations and let
this parameter filter out all of the speedy execu-
tion paths.

AInclusive is used in conjunction with Min-
ToReport. If this value is TRUE then a log entry
will be made if the execution time is greater-
than-or-equal-to MinToReport; otherwise it will
be made if the execution time exceeds MinToRe-
port.

ACondition also controls whether or not a
log entry is made. If you have no specific condi-
tions pass TRUE. Any expression resulting in a
Boolean return value can be used for this pa-
rameter.

Finally, ALogInOut instructs the class to log
when the block of code was entered and when it
returned. This is extremely useful for logging
multiple nested methods and recursive functions.

Most of the private member variables of TTAT
are used to copy the values passed into the con-
structor for later use within the destructor. The
remaining variables are used for calculating the
timing details.

Smith, Debugging AidsSmith, Debugging AidsSmith, Debugging AidsSmith, Debugging Aids Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004

5555 C++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's Journal

TTAT supports two methods of measuring
execution time. Any system running a high reso-
lution performance counter (HRPC) with Win-
dows 95 and above will be able to take advantage
of two API calls: QueryPerformanceCounter()
and QueryPerformanceFrequency(). All other
systems will fall back to GetTickCount() for
their results. Here's how the constructor uses
these functions:

TTAT::TTAT(AnsiString ATitle,
 DWORD MinToReport, boolboolboolbool AInclusive,
 boolboolboolbool ACondition, boolboolboolbool ALogInOut)
{
FTitle = ATitle.Unique();
FMinToReport = MinToReport;
FInclusive = AInclusive;
FCondition = ACondition;
FLogInOut = ALogInOut;

// best choice
HRPCAvail =
 QueryPerformanceCounter(&FStart);

// next best
ifififif(!HRPCAvail)
 FTickStart = ::GetTickCount();

ifififif(FLogInOut)
 AnsiOutputDebug("<<<<< In: " + FTitle);

}

The first five lines copy the constructor parame-
ters. (A special note should be made about the
copying a unique instance of an AnsiString in
multiple threads due to reference counting is-
sues.) The next line checks to see if an HRPC is
available. If it is available then HRPCAvail is set
to TRUE and FStart is assigned the counter’s pre-
sent value. If no HRPC is available then TTAT
reverts to GetTickCount().

So what is an HRPC? Unlike GetTick-
Count() which has a resolution of around 10 ms,
an HRPC has a much higher resolution that's
equal to the value returned by a call to Query-
PerformanceFrequency(). This value indicates
the number of counts performed per second and
it cannot change while the system is running.

The last line in the constructor outputs a mes-
sage (if FLogInOut is TRUE) to indicate that the

block of code being monitored is about to exe-
cute.

After TTAT’s constructor has completed your
block of code will execute as normal. Once the
block of code goes out of scope, TTAT will also go
out of scope, causing the destructor to be called:

TTAT::~TTAT(voidvoidvoidvoid)
{
doubdoubdoubdoublelelele TimeDiff;

ifififif(HRPCAvail)
 {
 LARGE_INTEGER FStop;
 QueryPerformanceCounter(&FStop);

 // get the HRPC frequency
 LARGE_INTEGER FQPF;
 QueryPerformanceFrequency(&FQPF);

 // convert to milliseconds
 TimeDiff = static_caststatic_caststatic_caststatic_cast<doubledoubledoubledouble>>>>
 (FStop.QuadPart - FStart.QuadPart) *
 1000 / static_cast<static_cast<static_cast<static_cast<doubledoubledoubledouble>>>>
 (FQPF.QuadPart);
 }
elseelseelseelse
 {
 DWORD FTickEnd = ::GetTickCount();
 TimeDiff = FTickEnd - FTickStart;
 }

ifififif(FCondition && (
 (FInclusive && TimeDiff >= FMinToReport)
 || (TimeDiff > FMinToReport)
))
 AnsiOutputDebug(FTitle + " TAT = " +
 FloatToStrF(TimeDiff, ffGeneral, 15, 4)
 + " ms");

ifififif(FLogInOut)
 AnsiOutputDebug(">>>>> Out: " + FTitle);
}

The destructor determines the method used to
calculate the time elapsed by first checking if
HRPCAvail is TRUE. If it is, then the current
counter’s value is determined along with the sys-
tem's counter frequency by using QueryPerfor-
manceCounter(). This result is then used to cal-
culate the elapsed time with a conversion to mil-
liseconds.

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 Smith, Debugging AidsSmith, Debugging AidsSmith, Debugging AidsSmith, Debugging Aids

C++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's Journal 6666

Calculating the elapsed time requires a quick
look at LARGE_INTEGER, the data-type used by
the performance counter functions. WINNT.H
defines LARGE_INTEGER as a structure containing
a LONGLONG variable named QuadPart. LONGLONG
is a typedef for __int64. When there is no
HRPC available TTAT resorts to using GetTick-
Count(); in this case there is no conversion to
milliseconds required.

 The destructor next checks if a message
needs to be sent to the debugger based on the
parameters passed to the constructor. If a mes-
sage is to be output, the elapsed period is for-
matted using the FloatToStrF() method.

Finally, if the user of TTAT needs to track
nested calls, another message is sent to the de-
bugger to indicate which TTAT object has gone
out of scope.

Let’s have a quick look at one of the exam-
ples provided in the demo application accom-
panying this article. Listing B provides a typical
recursive approach to calculating the factorial of
a number (I’ve set the test value to 3 to keep the
log short so feel free to play with larger values).

At this point I’ll encourage you to visit the
sample application for more examples. It con-
tains several buttons that perform different tim-
ing/tracing scenarios. You can view the results
by using C++Builder’s Event Viewer or DE-
BUGVIEW as mentioned earlier.

Conclusion
In this article we’ve looked at several aids to
more easily track program flow, produce some
basic profiling information and, more impor-
tantly, turn all of these into comments when
producing Release Builds of our products.

The tools provided are useful in all types of
applications—single/multi-threaded, GUI- or
non-GUI-based. In future articles I hope to ex-
plore other techniques I use to trace complicated
projects but for now I hope you’ll find the
information in this article useful in debugging
and profiling your current projects.

You can download the code for this article from
http://www.bcbjournal.org.

Contact Malcolm at msmith@bcbjournal.org.

References
1. http://tinyurl.com/3yauv
2. http://tinyurl.com/34bg9
3. http://tinyurl.com/2h9gv

Listing Listing Listing Listing BBBB:::: An example recursive trace

void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall TfrmMain::btnTest2Click
(TObject *Sender)
{
AnsiOutputDebug("-> factorial(3) = ?");

intintintint Result = Factorial(3);

AnsiOutputDebug("-> Result = " +
 IntToStr(Result));
}

int __fastcallint __fastcallint __fastcallint __fastcall TfrmMain::Factorial(intintintint n)
{
TTAT tat("Factorial:" + IntToStr(n), 0,
 truetruetruetrue, truetruetruetrue, truetruetruetrue);

ifififif(n < 2)
 {
 AnsiOutputDebug("Factorial(1)=1");
 returnreturnreturnreturn 1;
 }

returnreturnreturnreturn n * Factorial(n-1);
}

Share your thoughtsShare your thoughtsShare your thoughtsShare your thoughts about the Journal with

other readers by using our online forums:

http://forums.bcbjournal.org.

Smith, Debugging AidsSmith, Debugging AidsSmith, Debugging AidsSmith, Debugging Aids Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004

7777 www.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.org

A TDataSource
Component Editor
by Bob Swart

n the January 2004 issue, I wrote about
C++Builder property editors, and demon-
strated how we can write our own property

editor in C++ (or Delphi) and then add them to
the IDE. This time, I'll show how we can enhance
the design-time power of C++Builder even fur-
ther by creating component editors.

Component Editors
Component editors are like property editors;
they are used to enhance the integrated devel-
opment environment of Delphi and C++Builder.
And, as with property editors, they are basically
derived from a single base class where some ab-
stract methods need to be overridden and rede-
fined in order to give the component editor the
desired behaviour. In contrast to property editors
however, component editors are component-
specific, not property-specific, entities. They are
bound to a particular component type, and they
are generally executed by a click of the right
mouse button on the component (when dropped
on a form). This way of activation is a bit differ-
ent than property editors, but other than that, the
process of writing your own component editor is
essentially the same.

A component editor is created for each com-
ponent that is selected in the form designer based
on the component's type (see also GetCompo-
nentEditor() and RegisterComponentEdi-

tor() in DesignIntf.pas). When the compo-
nent is double-clicked, the Edit() method is
called. When the context menu for the compo-
nent is invoked, the GetVerbCount() and Get-
Verb() methods are called to build the menu. If
one of the verbs is selected, ExecuteVerb() is
called. Copy() is called whenever the component
is pasted to the clipboard. You only need to cre-
ate a component editor if you wish to add verbs
to the context menu, change the default double-
click behaviour, or paste an additional clipboard
format. The interface definition for the ICompo-
nentEditor interface contains the six virtual

methods (Edit, ExecuteVerb(), GetVerb(),
GetVerbCount(), PrepareItem(), and Copy()),
and as with a property editor, we can override
any of these six virtual methods to build the spe-
cial behavior inside our component editor.

Default Component Editor
Apart from the general TComponentEditor type,
there is a default component editor—called TDe-
faultEditor—that is used by most components
(unless another component editor is installed to
override the default one). The TDefaultEditor
class implements Edit() to search the properties
of the component and to generate the (or navi-
gate to an already existing) OnCreate, OnChange
or OnClick event (whichever it finds first), or the
first alphabetic event handler that's available.

Whenever the component editor modifies the
component it must call the Modified() method
of the IDE's designer to inform the designer that
(the component on) the form has been modified.

I

Figure AFigure AFigure AFigure A

TDataSource component editor.

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 Swart, A TDataSource Component EditorSwart, A TDataSource Component EditorSwart, A TDataSource Component EditorSwart, A TDataSource Component Editor

C++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's Journal 8888

If we only use the component editor to display
some information (like a general about box, for
example) there is no need to inform the designer.

Example: TDataSourceCompo-
nentEditor
With this information at hand, we can build a
useful component editor. Consider the
TDataSource component, that lives for one main
purpose: to be connected to a TDataSet (or
TDataSet-derived) component and act as con-
nector between this TDataSet and other data-
aware components (including other TDataSets).

Although we can use the Object Inspector to
assign a value to the DataSet property, some-
times it's quicker if you do not have to switch
from your form or data module to the Object In-
spector, but if you can simply assign a value
to the DataSet property by connecting it to one
of the available TDataSets on the
current form or data module. This is
the behaviour that I want to im-
plement in my TDataSource Com-
ponent Editor (called TDataSource-
ComponentEditor).

First, we need to decide which
base class to use. For the
TDataSource component, it appears
that some (default) behavior is al-
ready implemented if you double-
click on the component, so the TDe-
faultEditor is the best choice as
parent class.

We then need to override and
implement a number of methods.
Let's start with GetVerbCount(),
which returns the number of menu
entries that appear when we right-
click on the TDataSource compo-
nent. I want at to include one menu
entry for an About box. And for
every TDataSet (or derived) com-
ponent I would like to have a dy-
namic menu entry that says "Con-
nect to ..." followed by the name of
this TDataSet component. This
means that we can simply right-click
on a TDataSource component and it
will show a "Connect to ..." option

for all available datasets (which makes it quick
and easy to connect them to the TDataSource).
In order to find out how many datasets are avail-
able, we need to look at the current form or data
module. The component itself is owned by this
form or data module, so we only have to look at
the owner of the current component, and then
walk through all components owned by the
owner. This is defined by the owner's Compo-
nents array, which holds ComponentCount com-
ponents (counting from 0 to ComponentCount
minus 1).

Once we've defined how many menu entries
to show (returned by the GetVerbCount()), it's
not difficult to return the individual menu entries
(with GetVerb()). Even the actual Execute-
Verb() is straightforward: just walk through the
components of the owner, find the right TData-
Set component (specified by the index number)

Listing Listing Listing Listing AAAA:::: DSCompEdit.h

#ifndef DSCompEditH
#define DSCompEditH

#include "DesignIntf.hpp"
#include "VCLEditors.hpp"

classclassclassclass TDataSourceComponentEditor:
 publicpublicpublicpublic TDefaultEditor
{
 typedeftypedeftypedeftypedef TDefaultEditor inheritedinheritedinheritedinherited;

publicpublicpublicpublic:
 virtual void __fastcallvirtual void __fastcallvirtual void __fastcallvirtual void __fastcall Edit(voidvoidvoidvoid);
 virtual int __fastcallvirtual int __fastcallvirtual int __fastcallvirtual int __fastcall GetVerbCount(voidvoidvoidvoid);
 virtualvirtualvirtualvirtual AnsiString __fastcall GetVerb(intintintint index);
 virtualvirtualvirtualvirtual void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall ExecuteVerb(iiiintntntnt index);

publicpublicpublicpublic:
 #pragma option push -w-inl
 inline __fastcall virtualinline __fastcall virtualinline __fastcall virtualinline __fastcall virtual
 TDataSourceComponentEditor(
 Classes::TComponent* AComponent,
 _di_IDesigner ADesigner):
 TDefaultEditor(AComponent, ADesigner) { }
 #pragma option pop

publicpublicpublicpublic:
 #pragma option push -w-inl
 inline __fastcallinline __fastcallinline __fastcallinline __fastcall virtualvirtualvirtualvirtual
 ~TDataSourceComponentEditor(voidvoidvoidvoid) { }
 #pragma option pop
};

#endif // DSCompEditH

Swart, A TDataSource Component EditorSwart, A TDataSource Component EditorSwart, A TDataSource Component EditorSwart, A TDataSource Component Editor Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004

9999 www.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.org

and assign it to the DataSet property
of the current TDataSource compo-
nent.

As final touch, I've also overrid-
den the Edit() method in order to
show an About box if you double-
click on the TDataSource component
(note that this would hide the default
behaviour, so I've also called the TDe-
faultEditor::Edit() method to
compensate for that). The definition of
the TDataSourceComponentEditor,
with the four virtual methods that I've
implemented, can be seen in Listing
A.

The actual implementation of the
TDataSourceComponentEditor can
be seen in Listing B. Note that in or-
der to determine whether or not a
component is a TDataSet (or derived)
component, I use dynamic_cast,
which returns a valid pointer if the
component is a TDataSet (or a de-
rived type) but a NULL pointer other-
wise. This is an effective test that
proves very powerful, since it will, in
one step, identify TDataSet or de-
rived classes (which are the only
classes that can be assigned to the
DataSet property of the TDataSource
component).

Finally, notice the Register()
method (which must be placed in the
namespace that corresponds to the
file-name), where we call the Regis-
terComponentEditor() method to
register the TDataSourceCompo-

nentEditor for the TDataSource
component.

After you've installed this compo-
nent editor, for example in the
dclusr.dpk package (see the article of
January 2004 for more installation de-
tails), you can see the component edi-
tor in action by right-clicking on the
TDataSource component. See, for ex-
ample, Figure A where I've used four
different dbExpress datasets to illustrate the be-
havior.

Although it doesn't save a whole lot of time
compared to moving to the Object Inspector, this
component editor enables you to extend the cur-
rent functionality. Possible ideas that I've consid-

Listing Listing Listing Listing BBBB:::: DSCompEdit.cpp

#include "DSCompEdit.h"
#include "DB.hpp"
#pragma package(smart_init)

void __fastcall void __fastcall void __fastcall void __fastcall
 TDataSourceComponentEditor::Edit(voidvoidvoidvoid)
{
 MessageDlg("TDataSourceComponentEditor",
 mtInformation, TMsgDlgButtons() << mbOK, 0);
 TDefaultEditor::Edit(); // inherited
}

int __fastcallint __fastcallint __fastcallint __fastcall
 TDataSourceComponentEditor::GetVerbCount(voidvoidvoidvoid)
{
 TComponent* ComponentOwner = Component->Owner;
 intintintint DataSets = 1; // first one for About...
 ifififif (ComponentOwner)
 {
 forforforfor (intintintint i=0;
 i < ComponentOwner->ComponentCount; i++)
 ifififif (ddddyyyynamic_castnamic_castnamic_castnamic_cast<TDataSet*>
 (ComponentOwner->Components[i]))
 DataSets++;
 }
 returnreturnreturnreturn DataSets;
}

AnsiString __fastcallfastcallfastcallfastcall
 TDataSourceComponentEditor::GetVerb(intintintint index)
{
 ifififif (index == 0) returnreturnreturnreturn
 "&About TDataSourceComponentEditor...";
 elseelseelseelse
 {
 TComponent* ComponentOwner = Component->Owner;
 intintintint DataSets = 0;
 ifififif (ComponentOwner)
 {
 forforforfor (intintintint i=0;
 i < ComponentOwner->ComponentCount; i++)
 ifififif (ddddyyyynamic_castnamic_castnamic_castnamic_cast<TDataSet*>
 (ComponentOwner->Components[i]))
 {
 DataSets++;
 ifififif (DataSets == index)
 returnreturnreturnreturn "&Connect to " +
 (ComponentOwner->Components[i])->Name;
 }
 }
 }
}

(Continued on next page)

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 Swart, A TDataSource Component EditorSwart, A TDataSource Component EditorSwart, A TDataSource Component EditorSwart, A TDataSource Component Editor

C++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's Journal 10101010

ered with but never implemented are
to append the name of the dataset with
additional information, like the number
of records, whether the dataset is cur-
rently open ("live") or closed, and—in
case of the TClientDataSet—if the
data are from a local or remote source.
This would lead to functionality that
the Object Inspector can not easily of-
fer, and is left as an exercise for the
reader (perhaps a topic for a follow-up
article if you've enjoyed this one—feel
free to let me know).

Conclusion
 In this article, I've demonstrated how
we can build component editors, by
building a TDataSource component
editor that can connect to any TData-
Set component on the same form or
data module. I hope to have shown that
Property and Component Editors make
powerful additions to the C++Builder
IDE, and they can increase the RAD
experience by automating or support-
ing tasks at design-time.

The full source for this article’s ex-
ample program can be downloaded
from http://www.bcbjournal.org.

Contact Bob at
http://www.drbob42.com.

Listing Listing Listing Listing B (Continued)B (Continued)B (Continued)B (Continued):::: DSCompEdit.cpp

void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall TDataSourceComponentEditor::
 ExecuteVerb(intintintint index)
{
 ifififif (index == 0) Edit(); // about box
 elseelseelseelse
 {
 TComponent* ComponentOwner =
 Component->Owner;
 intintintint DataSets = 0;
 ifififif (ComponentOwner)
 {
 forforforfor (int i=0; i < ComponentOwner->
 ComponentCount; i++)
 ifififif (dynamic_cast<TDataSet*>
 (ComponentOwner->Components[i]))
 {
 DataSets++;
 ifififif (DataSets == index)
 {
 (dynamic_castdynamic_castdynamic_castdynamic_cast<TDataSource*>(Component))
 ->DataSet = dynamic_castdynamic_castdynamic_castdynamic_cast<TDataSet*>
 (ComponentOwner->Components[i]);
 Designer->Modified();
 }
 }
 }
 }
}

namespacenamespacenamespacenamespace Dscompedit
{
 void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall PACKAGE Register()
 {
 RegisterComponentEditor(
 __classid__classid__classid__classid(TDataSource),
 __classid__classid__classid__classid(TDataSourceComponentEditor)
);
 }
}

Refer a friend Refer a friend Refer a friend Refer a friend and receive 3 free months3 free months3 free months3 free months of the Journal! If your re-

ferral results in a new 12-month subscription, we'll extend your

subscription by three additional months. Start referring today!

If you have any questions about this process, please contact

sales@bcbjournal.org.

Swart, A TDataSource Component EditorSwart, A TDataSource Component EditorSwart, A TDataSource Component EditorSwart, A TDataSource Component Editor Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004

11111111 www.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.org

Using GDI+, Part II: Bitmaps
By Damon Chandler

ast month, I
demonstrated

how to set up
GDI+ for use in a

VCL application. This
month, I’ll show you
how to work with bit-
maps in GDI+ and how
to use GDI+ drawing
routines to effect out-
put to a TBitmap ob-
ject.

Raster- vs. vector-based ren-
dering
Drawing anything to a digital device ultimately
boils down to highlighting certain pixels and
turning off others. A digital image is created by
defining a particular pattern of pixels, one which
our visual system interprets as a representation
of a scene [1].
 In Windows, there are two main ways to ren-

der a digital image to an output device (e.g., a
screen, printer). One approach is to load/create a
bitmap and then transfer this bitmap to the de-
vice via, e.g., the BitBlt() GDI function or the
Graphics::DrawImage() GDI+
method; this technique is typically
called bitmapped or raster-based rendering.
The other approach is to use a higher-
level “language” to communicate to the
output device the lines, shapes, and
other graphics primitives that you want
drawn; this latter technique is called
vector-based rendering.
This month, I'll cover raster-based

rendering with GDI+ bitmaps; and, next
time, we'll tackle vector-based render-
ing (with metafiles). Raster-based ren-
dering is typically faster than vector-
based rendering, but this speed comes
at a cost. Namely, bitmaps lack scalabil-
ity—if you want to draw a larger version of a bit-

bitmapped image, you'll need to perform some
form of interpolation.

GDI+ bitmaps
Recall that there are three types of bitmaps in the
standard GDI: device-dependent bitmaps (DDBs);
device-independent bitmaps (DIBs); and DIB section
bitmaps.; see [2]. Also recall that whereas the pixel
format—i.e., the number of bits with which each
pixel is represented—of a DDB depends on the
current screen settings, and whereas a DIB is not
a true graphics object (meaning that you can’t
select it into a device context), a DIB section bit-
map suffers from neither of these limitations. Ac-
cordingly, when using the standard GDI, DIB
section bitmaps are the preferred variety for
caching and drawing raster-based graphics. Be-
cause GDI+ relies on the standard GDI as its
backend, all bitmaps in GDI+ are effectively DIB
section bitmaps.

You create a (DIB section) bitmap in GDI+ by
using the Bitmap class. The Bitmap class is a de-
scendant of the GDI+ Image class that provides

L

TableTableTableTable 1: 1: 1: 1: Commonly used methods of the Bitmap class

Method Description
UINT GetWidth() Returns the width of bit-

map, in pixels.
UINT GetHeight() Returns the height of the

bitmap, in pixels.
PixelFormat GetPixel-
Format()

Returns a PixelFormat-
type constant [3] that iden-
tifies the number of bits
used to represent each
pixel.

(Continued on next page)

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 Chandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part II

C++Builder Developer'C++Builder Developer'C++Builder Developer'C++Builder Developer's Journals Journals Journals Journal 12121212

bitmap-specific functionality such as creating a
bitmap from a DDB or DIB, and accessing and
modifying the bitmap’s pixels. Table 1 lists the
Bitmap class’s key methods (many of which are
inherited from the Image class); see [4] for a full
listing.

Notice that Table 1 doesn’t list a method for
loading a bitmap from a file. As I’ll discuss next,
loading a bitmap is typically done by using the
Bitmap constructor.

Bitmap constructors

The Bitmap class provides 10 constructors which
are used to create GDI+ bitmaps from various
sources and/or with various attributes. For ap-
plications in which a bitmap is used as an in-
memory drawing surface, you typically need a
bitmap of a specific pixel format and of a specific
size. Here’s the declaration of the Bitmap con-
structor that you’d use in that case:

voidvoidvoidvoid Bitmap(
 INT width,
 INT height,
 PixelFormat format
);

The width and height parameters specify the
dimensions of bitmap, in pixels; and the format
parameter specifies the bitmap’s pixel format [3].
For example, the following code snippet demon-

strates how to create a 512x512, 24-bits-per-pixel
(bpp) bitmap:

// create a 24-bpp 512x512 bitmap
gdp::Bitmap bitmap(512, 512,
 PixelFormat24bppRGB);
GDPCheck(bitmap.GetLastStatus());
// other code here...

Note that all of the pixels of the newly created
bitmap are initially set to zero. (Also, recall that
the GDPCheck() function was defined in last
month’s article.)

Another common requirement is the ability
to load a bitmap from a file; here’s the Bitmap
constructor to do that:

voidvoidvoidvoid Bitmap(
 constconstconstconst WCHAR* filename,
 BOOL useIcm = FALSE
);

The filename parameter specifies the name of
.BMP file to load, and the optional useIcm pa-
rameter that specifies whether or not the method
should acknowledge the bitmap’s embedded
color-profile information, if present. Listing A
demonstrates how to load a bitmap from a file;
the Bitmap object is created on the heap—so that
it remains alive throughout the form’s lifetime—
and it is destroyed in the form’s destructor before
calling the GdiPlusShutdown() function.

TableTableTableTable 1 (Cont1 (Cont1 (Cont1 (Continuedinuedinuedinued):):):): Commonly used methods of the Bitmap class

Method Description
Status LockBits(
 constconstconstconst Rect* rect, UINT flags,
 PixelFormat format,
 BitmapData* lockedBitmapData
)

Retrieves/specifies a pointer to a buffer to the bitmap’s
pixels; see “Accessing the pixels” later in this article.

Status UnlockBits(
 BitmapData* lockedBitmapData
)

Effects to the bitmap any changes made to the buffer pre-
viously retrieved/specified via the LockBits() method;
see “Accessing the pixels” later in this article.

Status Save(
 constconstconstconst WCHAR* filename,
 constconstconstconst CLSID* clsidEncoder,
 constconstconstconst EncoderParameters*
 encoderParams = NULL
)

Saves the bitmap to a file specified by filename and in
the file-format specified by clsidEncoder; the optional
and file-format-specific encoderParams parameter can be
used to specify attributes with which the file should be
saved (e.g., compression quality for JPEGs).

Chandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part II Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004

13131313 www.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.org

The Bitmap class also provides a
constructor to load a bitmap from a re-
source instead of from a file. To load a
bitmap from a resource, you’d use the
following Bitmap constructor:

voidvoidvoidvoid Bitmap(
 HINSTANCE hInstance,
 const WCHAR* bitmapName
);

The hInstance parameter specifies the
handle to the (application or library)
instance that contains the resource
identified by the bitmapName parame-
ter. (This method is similar to the
LoadFromResourceName() method of
the TBitmap class.)

The Bitmap class also provides con-
structors that allow you to create a bit-
map based on an existing DDB, DIB, or
even a raw array of pixels:

// creation based on a DDB
// (or DIB section bitmap)
voidvoidvoidvoid Bitmap(
 HBITMAP hbm,
 HPALETTE hpal
);

// creation based on a DIB
voidvoidvoidvoid Bitmap(
 constconstconstconst BITMAPINFO* gdiBitmap-
Info,
 VOID* gdiBitmapData
);

// creation based on a raw array
voidvoidvoidvoid Bitmap(
 INT width,
 INT height,
 INT stride,
 PixelFormat format,
 BYTE* scan0
);

For creation based on a DDB, the Bitmap con-
structor takes two parameters: a handle to the
DDB (hbm; this can also be a handle to a DIB sec-
tion bitmap) and a handle to the DDB’s palette
(hpal, which can be NULL if the DDB doesn’t use
a palette). The Bitmap object won’t take owner-

ship of the DDB; rather, it creates it’s own bitmap
representation (DIB section) based on the DDB.

For creation based on a DIB, the constructor
also takes two parameters: a pointer to a DIB’s
header and color table (gdiBitmapInfo), and a
pointer to the DIB’s pixels (gdiBitmapData).
Again, the Bitmap object doesn’t assume owner-
ship of the DIB.

For creation based on a raw array of pixels,
the Bitmap constructor takes five parameters:
integers that specify the width and height of the
image, an integer that specifies how many bytes

Listing Listing Listing Listing AAAA:::: Loading a bitmap

//---
// in header...
//---
#include <memory>
classclassclassclass TForm1 : publicpublicpublicpublic TForm
{
// other stuff...

privateprivateprivateprivate:
 ULONG_PTR gdp_token_;
 std::auto_ptr<gdp::Bitmap> bitmap_;
 void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall LoadBitmap(WideString fname);
};

//---
// in source...
//---
__fastcall__fastcall__fastcall__fastcall TForm1::TForm1(
 TComponent* Owner) : TForm(Owner)
{
 // initialize the GDI+ library
 GDPCheck(
 gdp::GdiplusStartup(&gdp_token_,
 &gdp::GdiplusStartupInput(), NULL
));
}

__fastcall__fastcall__fastcall__fastcall TForm1::~TForm1()
{
 // delete the Bitmap
 deletedeletedeletedelete bitmap_.release();

 // close the GDI+ library
 gdp::GdiplusShutdown(gdp_token_);
}

(Continued on next page)

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 Chandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part II

C++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's Journal 14141414

of the array should be used for each row
(stride), a PixelFormat-type variable [3] that
specifies the pixel-format of the array (format),
and a pointer to the beginning of the array
(scan0).

The Bitmap class also provides four other
constructors which are used to create a bitmap
based on an IStream, based on a DirectDraw
surface, based on the attributes of a GDI+ Graph-
ics object, or based on an icon. I won’t discuss
these constructors here, but you can see [5] for
more information.

Drawing GDI+ bitmaps to the screen

Now that you know how to create GDI+ bit-
maps, let me show you draw them to the screen.
As I mentioned last month, this is accomplished
by using the DrawImage() method of the GDI+
Graphics class [6]. There are actually 16 variants
of the DrawImage() method, which allow you to
draw the bitmap at (integer and floating-point)
locations, using (integer and floating-point) scal-
ing factors, and using a callback function.

For example, to draw a bitmap in its original
size at location (x_pos, y_pos) in your form’s cli-
ent area, you’d do the following:

// create a Graphics object associated
// with the form
gdp::Graphics graphics(Handle);
GDPCheck(graphics.GetLastStatus());

// draw the bitmap to the form
// at location (10, 20)
intintintint constconstconstconst x_pos = 10;
intintintint constconstconstconst y_pos = 20;
graphics.DrawImage(
 &bitmap, x_pos, y_pos
);

Here, bitmap is assumed to be a pre-created
Bitmap object. Similarly, here’s the code to draw
a scaled version of the bitmap:

// create a Graphics object associated
// with the form
gdp::Graphics graphics(Handle);
GDPCheck(graphics.GetLastStatus());

// draw the bitmap to the form
// at location (10, 20) and in
// 20% of its original size
intintintint constconstconstconst x_pos = 10;
intintintint constconstconstconst y_pos = 20;
graphics.DrawImage(
 &bitmap, x_pos, y_pos,
 // new width
 bitmap.GetWidth() / 5,
 // new height
 bitmap.GetHeight() / 5
);

And, to draw just a portion of the bitmap, you’d
use the following approach:

// create a Graphics object associated
// with the form
gdp::Graphics graphics(Handle);
GDPCheck(graphics.GetLastStatus());

// draw the first 75 rows of the bitmap
// to the form at location (10, 20) and
// in 150% of its original size
gdp::Rect const RDest(
 // target (x, y)
 10, 20,

Listing Listing Listing Listing A (Continued)A (Continued)A (Continued)A (Continued):::: Loading a bitmap

void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall TForm1::
 LoadBitmap(WideString fname)
{
 // load the bitmap from a file
 bitmap_.reset(
 newnewnewnew gdp::Bitmap(fname.c_bstr())
);

 // if the bitmap did not
 // load successfully...
 gdp::Status constconstconstconst res =
 bitmap_->GetLastStatus();
 ifififif (res != gdp::Ok)
 {
 // delete the invalid bitmap
 deletedeletedeletedelete bitmap_.release();
 // throw an exception
 throwthrowthrowthrow EGDIPlusError(res);
 }

 // NOTE: You should check that
 // bitmap_.get() != NULL before
 // trying to access the bitmap
 // elsewhere in your code
}

Chandler, Using Chandler, Using Chandler, Using Chandler, Using GDI+, Part IIGDI+, Part IIGDI+, Part IIGDI+, Part II Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004

15151515 www.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.org

 // target width
 1.5f * bitmap.GetWidth(),
 // target height
 1.5f * bitmap.GetHeight()
);
graphics.DrawImage(
 &bitmap,
 // target (destination) rectangle
 RDest,
 // source coordinates (chunk of
 // the bitmap to draw)
 0, 0, bitmap.GetWidth(), 75,
 // source chunk is in pixel coords
 gdp::UnitPixel
);

This latter version of the DrawImage() method
operates in a fashion similar to the
StretchBlt() GDI function. Note, however, that
although I’ve used integer-valued coordinates in
these examples, the DrawImage() method also
allows you to specify floating-point-valued coor-
dinates.

Drawing to GDI+ bitmaps

As with DDBs and DIB section bitmaps (but not
DIBs), you can render output to a GDI+ bitmap

by using normal drawing routines. In the stan-
dard GDI, you’d effect output to a bitmap object
by selecting the bitmap into a memory device
context (DC); you’d then call your drawing func-
tion, specifying a handle to that memory DC as
the “target” DC. In GDI+, you use a similar ap-
proach. Instead of creating a memory DC, you
create a Graphics object that’s associated with
the bitmap.

The following code snippet demonstrates
how to create a Graphics object that’s associated
with a bitmap and how to use that Graphics ob-
ject to render output to the bitmap (and then to
the screen); the result of this code is depicted in
Figure A:

// create a 24-bpp 128x256 bitmap
intintintint constconstconstconst bmp_cx = 128;
intintintint constconstconstconst bmp_cy = 256;
gdp::Bitmap bitmap(bmp_cx, bmp_cy,
 PixelFormat24bppRGB);
GDPCheck(bitmap.GetLastStatus());

// create a Graphics object that's
// associated with the bitmap
gdp::Graphics bmp_graphics(&bitmap);
GDPCheck(bmp_graphics.GetLastStatus());

// create a brush with a horizontal
// white-to-black gradient that
// repeats after bmp_cx units
gdp::LinearGradientBrush brush(
 // gradient starting point
 gdp::Point(0, 0),
 // gradient ending/restarting point
 gdp::Point(bmp_cx, 0),
 // white to start
 gdp::Color(255, 255, 255),
 // black to end
 gdp::Color(0, 0, 0)
);
GDPCheck(brush.GetLastStatus());

// fill the bitmap using the brush
bmp_graphics.FillRectangle(&brush,
 0, 0, bmp_cx, bmp_cy);

// create a Graphics object that's
// associated with the form and
// then draw the bitmap to the form
gdp::Graphics graphics(Handle);
GDPCheck(graphics.GetLastStatus());
graphics.DrawImage(&bitmap, 0, 0);

Figure AFigure AFigure AFigure A

By creating a GDI+ Graphics object that’s associ-
ated with a GDI+ Bitmap, you can first draw to the
bitmap, and then (using another Graphics object)
draw the bitmap to the screen.

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 Chandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part II

C++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's Journal 16161616

Note that this technique of first rendering output
to a bitmap and then rendering the bitmap to the
screen is known as double buffering; the bitmap
serves as a so-called “back buffer” and the screen
serves as the front or “primary buffer.” Double
buffering is useful for situations in which repeti-
tive, complex rendering is required: Instead of
placing the time-consuming drawing code
within, for example, the form’s OnPaint event
handler, it makes more sense (assuming your
drawing code doesn’t change) to execute the ex-
pensive code only once, storing the output in a
bitmap, and then drawing this bitmap to the
screen.

As note that the Graphics constructor which
takes a Bitmap pointer as it’s single parameter
(as used in this code) will fail—yielding a generic
out-of-memory error message—if the Bitmap’s
pixel format is PixelFormatUndefined, Pixel-
FormatDontCare, PixelFormat1bppIndexed,
PixelFormat4bppIndexed, PixelFor-

mat8bppIndexed, PixelFor-

mat16bppGrayScale, or PixelFor-

mat16bppARGB1555. This is a documented limita-
tion [6].

Accessing the bitmap’s pixels

One of the main advantages of using a DIB sec-
tion bitmap over a DDB is that the standard GDI
allows direct access to the DIB section’s pixels.
Accordingly, GDI+ also permits direct access to a
Bitmap’s pixel via the Bitmap::LockBits()
method.

To use the LockBits() method, you specify:
(1) the portion of the bitmap’s pixels to which
you want access, (2) the type of access desired
(reading, writing, or both), (3) the format of the
pixels (more on this shortly), and (4) a pointer to
a BitmapData object, which the LockBits()
method will fill with information about the bit-
map’s pixels. And, once you’re done examining
and/or modifying the pixels, you use the Bit-
map::UnlockBits() method to effect the
changes.

For example, to convert a 32-bpp bitmap to
grayscale, you’d use the Bitmap::LockBits()
and UnlockBits() methods as follows:

// load the bitmap from a file
gdp::Bitmap bitmap(L"c:/pict_32bpp.bmp");
GDPCheck(bitmap.GetLastStatus());

// define the area of the bitmap to lock
UINT constconstconstconst bmp_cx = bitmap.GetWidth();
UINT constconstconstconst bmp_cy = bitmap.GetHeight();
gdp::Rect bmp_rect(0, 0, bmp_cx, bmp_cy);

// grab a pointer to the pixels
gdp::BitmapData bmp_data;
GDPCheck(bitmap.LockBits(
 // portion of the bitmap to lock
 &bmp_rect,
 // read-/write-access flags
 gdp::ImageLockModeRead |
 gdp::ImageLockModeWrite,
 // desired format of output pixels
 bitmap.GetPixelFormat(),
 // filled with bitmap data (including
 // a pointer to the pixels)
 &bmp_data
));
unsigned charunsigned charunsigned charunsigned char* p_pixels =
 static_caststatic_caststatic_caststatic_cast<unsigned charunsigned charunsigned charunsigned char*>
 (bmp_data.Scan0);

forforforfor (UINT y = 0; y < bmp_cy; ++y)
{
 // grab an RGBQUAD* to each row
 RGBQUAD* p_scanline =
 reinterpret_castreinterpret_castreinterpret_castreinterpret_cast<RGBQUAD*>(
 p_pixels + (y * bmp_data.Stride)
);
 forforforfor (UINT x = 0; x < bmp_cx; ++x)
 {
 // compute grayscale
 unsigned unsigned unsigned unsigned shortshortshortshort const const const const gray_val =
 0.299f * p_scanline[x].rgbRed +
 0.587f * p_scanline[x].rgbGreen +
 0.114f * p_scanline[x].rgbBlue;

 // change the pixel
 p_scanline[x].rgbRed =
 p_scanline[x].rgbGreen =
 p_scanline[x].rgbBlue =
 (gray_val > 255) ?
 255 : gray_val;
 }
}

// unlock the bitmap (commits any
// changes made to the pixels)
bitmap.UnlockBits(&bmp_data);

Chandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part II Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004

17171717 www.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.org

Note that the desired pixel format,
which is specified via the third pa-
rameter to LockBits(), doesn’t
have to be the same as the pixel
format of the bitmap. However, for
16-bpp, 24-bpp, and 32-bpp bitmaps,
LockBits() will fail if you specify
an output pixel-format that requires
a color table (PixelFor-
mat1bppIndexed, PixelFor-

mat4bppIndexed, or PixelFor-

mat8bppIndexed). Furthermore, if
you request the data in a different
format than that of the bitmap (e.g.,
if you request PixelFor-

mat24bppRGB for a 32-bpp bitmap),
GDI+ will have to create a tempo-
rary array to accommodate your
new format. Although the documen-
tation for the LockBits() method
states that a temporary array is al-
ways created, I’ve found that this is
not the case when you request the
pixels in the same format as that of
the bitmap. In short, it’s generally
best to avoid format conversions
when using LockBits()—i.e., pass
the return value of the Bit-

map::GetPixelFormat() as the
third parameter to LockBits().

Saving bitmaps

After you’ve created and manipu-
lated a GDI+ bitmap, you can save
the output to a file by using the Bit-
map::Save() method. The Save()
method is actually inherited from
the Image class, which allows you to
save the bitmap to any file-format
for which GDI+ provides an encoder
(BMPs, GIFs, JPEGs, PNGs, and TIFFs). In order
to save a bitmap to specific format, however, you
need to specify the CLSID of the encoder; this is
accomplished by using the GetImageEncoders()
GDI+ function. Listing B provides utility func-
tions for retrieving the CLSID of an encoder given

its MIME-type string, and for saving a bitmap
using that encoder.

Listing Listing Listing Listing BBBB:::: Saving a bitmap

voidvoidvoidvoid GetEncoderCLSID(
 CLSID& enc_clsid,
 WideString mime_type
)
{
 UINT num_encs, size_encs;
 // get the number of installed encoders and
 // the size in bytes required to hold the
 // ImageCodecInfo data for these encoders
 GDPCheck(
 gdp::GetImageEncodersSize(&num_encs, &size_encs)
);
 ifififif (num_encs < 1)
 {
 throwthrowthrowthrow EGDIPlusError(
 "No GDI+ encoders installed."
);
 }

 // create a buffer to hold the encoders' data
 unsignedunsignedunsignedunsigned charcharcharchar* constconstconstconst p_buffer = newnewnewnew
 unsignedunsignedunsignedunsigned charcharcharchar[size_encs];
 trytrytrytry
 {
 // cast the buffer to ImageCodecInfo*
 gdp::ImageCodecInfo* constconstconstconst p_encs =
 reinterpret_castreinterpret_castreinterpret_castreinterpret_cast<gdp::ImageCodecInfo*>
 (p_buffer);
 // get the ImageCodecInfo for the encoders
 GDPCheck(gdp::GetImageEncoders(
 num_encs, size_encs, p_encs
));

 // run through the array of ImageCodecInfo,
 // looking for the CLSID of the desired encoder
 UINT idx;
 forforforfor (idx = 0; idx < num_encs; ++idx)
 {
 ifififif (WideString(p_encs[idx].MimeType) ==
 mime_type)
 {
 enc_clsid = p_encs[idx].Clsid;
 breakbreakbreakbreak;
 }
 }

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 Chandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part II

C++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's Journal 18181818

Using GDI+ with TBit-
map objects
Now that you know how to use the
GDI+ Bitmap class, let’s switch
gears and discuss how to use GDI+
to draw to a TBitmap object. In
many ways, the TBitmap class is
easier to use than GDI+’s Bitmap
class. On the other hand, because
the VCL relies on the standard GDI,
rendering fancy lines, shapes, and
text and performing basic image-
processing operations (namely, geo-
metric transformations) is much eas-
ier in GDI+.

Fortunately, as C++Builder de-
velopers, we get the best of both
worlds—you can easily instruct
GDI+ to render its output to a TBit-
map object.

Drawing to a TBitmap using

GDI+

The use GDI+ to draw to a TBitmap
object, you simply use the Graphics
constructor that takes an HDC (han-
dle to a device context) as one of its
parameters. Typically, this construc-
tor is used to create a Graphics ob-
ject that sends its output to the DC of a window;
however, the DC doesn’t have to be a window’s
DC, it can also be a memory DC that’s associated
with a TBitmap object (i.e., Bitmap->Canvas-

>Handle).
The following code snippet demonstrates

how to use GDI+ to render a gradient back-
ground and some text to the TBitmap object
that’s held in a TImage (Image1); the output of
this code is depicted in Figure B:

// grab a reference to the TBitmap
// that's held within Image1 and
// then resize it
Graphics::TBitmap& Bitmap =
 *Image1->Picture->Bitmap;

Bitmap.PixelFormat = pf24bit;
Bitmap.Width = 256;
Bitmap.Height = 256;

// local scope
{
 // create a Graphics object that's
 // associated with the TBitmap
 gdp::Graphics bmp_graphics(
 Bitmap.Canvas->Handle
);
 GDPCheck(
 bmp_graphics.GetLastStatus()
);

 // create a brush with a horizontal
 // red-to-blue gradient that
 // repeats after Bitmap.Width units
 gdp::LinearGradientBrush brush(
 // gradient starting point

Listing Listing Listing Listing B (Continued)B (Continued)B (Continued)B (Continued):::: Saving a bitmap

 // check that we found the encoder for
 // the specific MIME type
 ifififif (idx == num_encs)
 {
 throwthrowthrowthrow EGDIPlusError(
 "The specified encoder is not installed."
);
 }
 }
 __finally__finally__finally__finally
 {
 // free the buffer
 deletedeletedeletedelete [] p_buffer;
 }
}

voidvoidvoidvoid SaveBitmap(
 gdp::Bitmap& bitmap,
 WideString fname,
 WideString mime_type,
 gdp::EncoderParameters* p_save_options = NULL
)
{
 // get the CLSID of the encoder
 CLSID enc_clsid;
 GetEncoderCLSID(enc_clsid, mime_type);

 // save the bitmap using the encoder
 // (see [8] for info on using save_options)
 GDPCheck(
 bitmap.Save(fname.c_bstr(), &enc_clsid,
 p_save_options)
);
}

Chandler, Using GDI+, Part II: BitmapsChandler, Using GDI+, Part II: BitmapsChandler, Using GDI+, Part II: BitmapsChandler, Using GDI+, Part II: Bitmaps Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004

19191919 www.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.org

 gdp::Point(0, 0),
 // gradient ending/restarting point
 gdp::Point(Bitmap.Width, 0),
 // red to start
 gdp::Color(255, 0, 0),
 // blue to end
 gdp::Color(0, 0, 255)
);
 GDPCheck(brush.GetLastStatus());

 // fill the TBitmap using the brush
 bmp_graphics.FillRectangle(&brush,
 0, 0, Bitmap.Width, Bitmap.Height);

 // create a 25pt Tahoma font
 gdp::Font const font(
 L"Tahoma", // font name
 25, // font size
 gdp::FontStyleRegular // attributes
);
 GDPCheck(font.GetLastStatus());

 // draw some rotated green text
 // to the TBitmap
 bmp_graphics.RotateTransform(
 45.0f, gdp::MatrixOrderAppend
);
 bmp_graphics.DrawString(
 L"GDI+ on a TBitmap!", -1,

 &font, gdp::PointF(25, -30),
 &gdp::SolidBrush(
 gdp::Color(0, 255, 0))
);
}

// redraw the TBitmap
Image1->Refresh();

Note that I declared bmp_graphics in a local-
scope sub-block so that the Graphics object is
destroyed before the TBitmap object is assigned
to the TImage. This isn’t strictly required for this
example because the TImage class simply draws
the bitmap to the screen; it doesn’t draw to the
bitmap. In general, however, you need to make
sure that all GDI+ Graphics objects associated
with the TBitmap’s Canvas are destroyed before
calling a GDI routine that may alter the bitmap
(see [7] for more information on mixing GDI and
GDI+ code).

Converting a TBitmap to a GDI+ Bit-

map

As I discussed earlier, a very useful feature in
GDI+ is the ability to save a bitmap to various
formats (see Listing B). Although the TPicture
class is not too far behind in this regard (with the
proper third-party libraries), it’s often more con-
venient to use GDI+.

In order to save a TBitmap to a specific im-
age-file format using GDI+, you need to create a
Bitmap object based on the TBitmap object;
here’s the code to do that:

gdp::Bitmap* TBitmap2Bitmap(
 Graphics::TBitmap& VCLBitmap
)
{
 // use the GDI+ Bitmap constructor
 // that takes a handle to a DDB or
 // DIB section bitmap and a handle to
 // the DDB or DIB section's palette
 gdp::Bitmap* p_bitmap =
 newnewnewnew gdp::Bitmap(
 // handle to the GDI bitmap
 VCLBitmap.Handle,
 // handle to the GDI palette
 VCLBitmap.Palette
);

Figure BFigure BFigure BFigure B

By creating a GDI+ Graphics object that’s associ-
ated with the memory DC of a TBitmap object, you
can use GDI+ to render output to a TBitmap object.
Here, the TBitmap is simply displayed via a TImage
control.

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 Chandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part IIChandler, Using GDI+, Part II

C++Builder Developer's JournaC++Builder Developer's JournaC++Builder Developer's JournaC++Builder Developer's Journallll 20202020

 // validate the GDI+ bitmap
 gdp::Status const res =
 p_bitmap->GetLastStatus();
 ifififif (res != gdp::Ok)
 {
 deletedeletedeletedelete p_bitmap;
 throwthrowthrowthrow EGDIPlusError(res);
 }

 // return a pointer the GDI+ bitmap
 // (caller assumes ownership)
 returnreturnreturnreturn p_bitmap;
}

After the Bitmap object is created, you can sim-
ply use the technique presented in Listing B to
save the Bitmap to the desired format.

Conclusion
In this article I’ve demonstrated how to work
with GDI+ Bitmaps and how to use GDI+ to
draw to a TBitmap. The source code for this arti-
cle is available for download from
http://www.bcbjournal.org. Next time, we’ll
switch gears and examine GDI+ metafiles and
GDI+ vector-based drawing routines.

Contact Damon at editor@bcbjournal.org.

References
1. D. Marr and E. Hildreth, "Theory of edge de-
tection," Proc. R. Soc. Lond. B, 207, 1980.
2. D. Chandler, "Printing Bitmaps, Part I,"
C++Builder Dev. Journal, 5 (1), 2001. [link]
3. http://tinyurl.com/2v8zc
4. http://tinyurl.com/222mb
5. http://tinyurl.com/2zg9q
6. http://tinyurl.com/3bxqv
7. http://tinyurl.com/32bvo
8. http://tinyurl.com/27z75

Version 2.Version 2.Version 2.Version 2.0000 of our popular archive CDarchive CDarchive CDarchive CD is

now available! We’ve added more con-

tent, a new article title index, and HTML

versions of all articles in addition to the

PDF files. (Subscribers can take advan-

tage of a special discounted price; con-

tact sales@bcbjournal.org.)

For more information, please visit

http://bcbjournal.org/archive_cd.htm.

Not yet a subscriber? We've got a spspspspeeeecial cial cial cial

packagepackagepackagepackage just for you: A 12-month sub-

scription to the Journal plus an archive

CD for $77 (save $17).

For more information on this package,

please visit

http://bcbjournal.org/subscriptions.htm.

Chandler, Using GDI+, Part II: BitmapsChandler, Using GDI+, Part II: BitmapsChandler, Using GDI+, Part II: BitmapsChandler, Using GDI+, Part II: Bitmaps Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004

21212121 www.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.org

This Month's
Developer's Poll

This is a new feature of the Journal which allows you to
compare your opinions to those of other members of the
C++Builder Developer's Journal community. We will
publish the results of this poll in next month's issue, and
we will communicate the results of this poll to the C++
folks at Borland.

This month's poll question is…

What direction would you like to see Borland take
with their next C++ offering?

a. A cross-platform IDE, compiler, and component

framework such as a new, better version of
C++BuilderX.

b. A Windows-only IDE, compiler, and an up-
dated version of the VCL framework such as a
new, better version of C++Builder 6.

c. A Windows-only IDE, compiler, and support
for the .NET framework, such as a C++ variant
of Delphi 8.

d. A VI-style editor, with no IDE, a command-line-

only compiler, and a non-RAD framework.

Cast your vote online at http://polls.bcbjournal.org.

C++Builder Developer’s Journal (ISSN 1093-2097) is
published online monthly by Encoded Communica-
tions Group, 66 Lois Lane, Ithaca, NY 14850.

Customer Service: support@bcbjournal.org
Customer Relations (Voice) (607) 227-3757
Customer Relations (Fax) (707) 238-3031

Send all written correspondence to:
EnCoded Communications Group
66 Lois Lane
Ithaca, NY 14850

Editorial: editor@bcbjournal.org
Editor-in-Chief Damon Chandler
Managing Editor Jared Bish
Contributing Editors Bob Swart
 Brent Knigge
 Malcolm Smith

Copyright © 2004, EnCoded Communications
Group. All Rights Reserved.

C++Builder Developer’s Journal is an independently
produced publication of EnCoded Communications
Group. All rights reserved. Reproduction in whole
or in part in any form or medium without express
written permission of EnCoded Communications
Group is prohibited. EnCoded Communications
Group reserves the right, with respect to submis-
sions, to revise, republish, and authorize its readers
to use the tips submitted for personal and commer-
cial use.

Every attempt has been made to ensure the accuracy
of the published articles and code. EnCoded Com-
munications Group does not assume liability for the
use of the techniques or code published herein be-
yond the original subscription price of the Journal.

Microsoft Windows is a registered trademark of
Microsoft Corporation. C++Builder is a registered
trademark of Borland Software Corporation. All
other product names or services identified through-
out this journal are trademarks or registered trade-
marks of their respective companies.

Price

Personal $49/year
Personal with email delivery of
PDF file

$59/year

Corporate/Library/Institutional $79/year

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 This Month's Developer's PollThis Month's Developer's PollThis Month's Developer's PollThis Month's Developer's Poll

C++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's JournalC++Builder Developer's Journal 22222222

This Month's Contributors

Malcom Smith
Contributing Editor Malcolm Smith is owner of MJ Freelancing, which devel-
ops custom components and bespoke projects. Malcolm is also Chief Analyst
Programmer for Comvision Pty Ltd. designing and implementing security
management systems, concentrating on the integration of disparate CCTV
and alarm systems as well as streaming digital video into security control
rooms. Malcolm can be contacted at msmith@bcbjournal.org.

Bob Swart
Contributing Editor Bob Swart (aka "Dr.Bob," www.drbob42.com) is an au-
thor, trainer, and consultant who runs his own one-man company called
“eBob42” in The Netherlands. Bob, who writes his own “Delphi Clinic” train-
ing material, has spoken at Delphi and Borland Developer Conferences since
1993.

Damon Chandler
Damon Chandler develops image processing and graphics-based applications
in the Visual Communications Lab at Cornell University, where his research
focuses on image compression algorithms. Damon is a co-author of the Win-
dows 2000 Graphics API Black Book, a contributing author of the C++Builder
5 Developer's Guide, and a member of Team Borland (www.teamb.com).
Damon can be contacted at editor@bcbjournal.org.

Interested in writing for the C++Builder Developer's Journal?Interested in writing for the C++Builder Developer's Journal?Interested in writing for the C++Builder Developer's Journal?Interested in writing for the C++Builder Developer's Journal? Great! We're always on the look-

out for new authors with fresh ideas. Your article can be a short as a quick tip or as long as a

multipart series. If you have an idea, please don't hesitate to run it by our editors.

To submit a manuscript proposal (essentially, an extended abstract) either e-mail your pro-

posal to editor@bcbjournal.org or use the Manuscript Proposals forum at

http://forums.bcbjournal.org. We ask that you please limit your proposal to 250 words.

For more information, please visit http://bcbjournal.org/authors.htm.

23232323 www.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.orgwww.bcbjournal.org

Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6Volume 8, Number 6 June 2004June 2004June 2004June 2004 This Month's ContributorsThis Month's ContributorsThis Month's ContributorsThis Month's Contributors

