

Volume 9, Number 6Volume 9, Number 6Volume 9, Number 6Volume 9, Number 6————June 2005June 2005June 2005June 2005

www.bcbjournal.comwww.bcbjournal.comwww.bcbjournal.comwww.bcbjournal.com

ISSN 1093ISSN 1093ISSN 1093ISSN 1093----2097209720972097

EnCoded Communications Group www.bcbjournal.com C++Builder Developer’s Journal

A Monthly Publication Offering Tips & Techniques

for Borland C++Builder Developer’s Journal

CCuussttoomm IIccoonnss ffoorr
CCoonnssoollee--MMooddee AApppplliiccaattiioonnss
Curtis Krauskopf

PPuuttttiinngg IItt OOnn tthhee LLiinnee
Don Doerres

RReeddiirreeccttiinngg CCoonnssoollee
OOuuttppuutt
Malcolm Smith

CCrreeaattiinngg aann HHTTMMLL

UUsseerr IInntteerrffaaccee
Mark Finkle

SSeeccoonnddaarryy DDeesskkttooppss
Malcolm Smith

MMoouussee GGeessttuurreess
Damon Chandler

Edited by D. M. Chandler and M. J. Smith

Volume 9, Number 6—June 2005 This Month’s Contents

ISSN 1093-2097 2 C++Builder Developer’s Journal

3 Preface
Damon Chandler

4
Custom Icons for Console-
Mode Applications
Curtis Krauskop

7 Putting It On the Line
Don Doerres

11
Redirecting Console
Output
Malcolm Smith

19
Creating an HTML User
Interface
Mark Finkle

23 Secondary Desktops Malcolm Smith

29 Mouse Gestures Damon Chandler

In this Issue:

This Month’s Developer’s Poll 41

This Month’s Contributors 42

4

7
11

19

23

29

Volume 9, Number 6—June 2005 Chandler, Preface

C++Builder Developer’s Journal 3 www.bcbjournal.com

s C++Builder developers, an application’s

ease-of-use is not only something that we can

appreciate—it’s something that we have come

to expect and rely upon. In one way to another, I’m sure

we all feel that C++Builder—despite its long-standing

bugs—is a vital tool for rapid application develop-

ment. But, what it is about this tool that makes it so

useful? The compiler is certainly nothing to write

home about; and you’d be hard-pressed to find some-

one singing the praises of the IDE’s stability; so, what

exactly is it that we find so attractive about BCB? (See

this month’s poll question.)

 For me, the answer is simple: I find C++Builder’s

visual designer and component-based framework ex-

tremely accessible and intuitive to use. I have come to

rely upon this ease-of-use, and I strive to pass it on in

my own applications.

 This month’s special issue contains an interesting

mix of articles which cover several unique aspects of

application development, but all with one underlying

theme in mind: facilitating an end-user’s ability to access

and interact with an applica-

tion.

 Curtis Krauskopf opens

the issue by presenting a

tutorial on how to custom-

ize the icons of console-

mode applications, a task

that cannot be accomplished

directly via the IDE’s Project

Options dialog. If you’ve

never before created your own icons, this is an oppor-

tunity to learn the basics of Image Editor, and learn

how to add a touch of customization to your console

applications.

 Next, Don Doerres discusses how to access com-

mand-line parameters in GUI applications. In Win-

dows, there are various methods of passing parame-

ters to an application (e.g., via a shortcut’s properties,

in addition to using the command line). Often, it’s

much more convenient to specify this auxiliary infor-

mation as startup parameters than it is to use the ap-

plication’s various edit controls or dialog boxes.

 Contributing Editor Malcolm Smith then presents

a class—TConsoleRedirect—which provides a cru-

cial link between console-mode and GUI applications.

Malcolm discusses how to use the CreateProcess()

function and Windows pipes to launch a console ap-

plication and redirect its output to a standard edit or

memo control.

 Mark Finkle demonstrates how to use the

TCppWebBrowser control to harness the power of

HTML in GUI applications. Mark shows how to create

GUI elements and controls using HTML, and how to

use Dynamic HTML and JavaScript from within a

BCB application.

 Next, Malcolm Smith describes how to get the

most out of your screen’s real estate by creating a sec-

ondary desktop. Malcolm presents a novel DLL-based

approach which allows

selective forms of a single

BCB application to span

multiple desktops.

 Finally, I close the

issue by demonstrating

how to record, recog-

nize, and respond to

mouse gestures, a fea-

ture which provides a

quick and intuitive means of invoking common tasks

in GUI applications.

 On behalf of our editorial staff, I sincerely hope

you find this issue both informative and enjoyable. As

always, your feedback is appreciated. Enjoy!

Special Issue Editors

Damon M. Chandler and Malcolm J. Smith

A

This Month’s Special Issue
 By Damon Chandler

This month’s special issue contains

articles with one underlying theme…

facilitating an end-user’s ability to

interact with an application.

Volume 9, Number 6—June 2005 (Special Issue) Krauskopf, Custom Icons for Console-Mode Applications

ISSN 1093-2097 4 C++Builder Developer’s Journal

Figure BFigure BFigure BFigure B

A typical console-mode application contains a resource file

(.res), a Borland Project File (.bpf) and, of course, the C++

source file.

++Builder provides an icon for console-mode

applications. It’s a nice icon (see Figure A),

but at first glance it looks too much like the

C++Builder icon. I can’t count the number of times

I’ve accidentally clicked on the wrong icon in the

Taskbar. Another problem is that if you have two or

more console-mode applications running at the same

time, they all use the same default icon.

This article provides a tutorial on customizing the

icons of console-mode

applications. In addition,

I talk about creating

transparent pixels in a

customized icon and cre-

ating 16×16-pixel icons

using the Borland Image

Editor.

What to do
If you’ve done any significant Windows or VCL pro-

gramming using C++Builder, you probably know

about the “Load Icon” button on the Applications

panel on the project options screen. Unfortunately, for

console-mode applications, that button is grayed out.

To change the icon for a console-mode applica-

tion, first load its resource file into Image Editor, make

the changes and then save the modified resource file.

The new icon will be incorporated into the executable

after the resource file has been re-added to the project

or the Borland C++Builder IDE has been restarted.

Where to start
Let's say your console-mode application is called Con-

soleApp. The first step is to open the Project Manager

view as shown in Figure B.

 By default, the resource file is located in the same

directory as your console-mode application. For the

ConsoleApp project in Figure B, the resource file you

need to open is called CONSOLEAPP.RES. Open the

resource file using Borland’s Image Editor.

3-2-1… Launch the Image Editor
There are two places where you can find Image Edi-

tor:

1. In the Borland C++Builder 6 program menu (via

“Start | Programs | Borland C++Builder 6 |

Image Editor”).

C

Custom Icons for

Console-Mode

Applications

By Curtis Krauskopf

Figure Figure Figure Figure AAAA

The default console-mode

icon.

Krauskopf, Custom Icons for Console-Mode Applications Volume 9, Number 6—June 2005 (Special Issue)

C++Builder Developer’s Journal 5 www.bcbjournal.com

Figure CFigure CFigure CFigure C

A default console-mode application resource file

contains an icon called MAINICON.

Figure DFigure DFigure DFigure D

The icon editing window contains a pixel editor on the left

side and a full-size icon on the right side. Transparent pixels

(the blue-green pixels) surround the buildings.

2. In the C++Builder IDE; choose the “Tools”

menu and then choose “Image Editor”.

Open the resource file
In Image Editor, select “File | Open” and then navi-

gate to the .RES file for your console-mode applica-

tion.

Open the icon
In a default console-mode application’s resource file,

the icon in the resource file is called MAINICON. To

open the MAINICON icon, expand the Icon tree

branch and double-click on MAINICON (see Figure

C).

The double-click will open the icon editing win-

dow (Figure D) in Image Editor. The icon editing

window has two parts: a pixel editor in the left-hand

panel and a full-size icon in the right-hand panel. The

default console-mode icon is a 32×32 pixel, 16-color

icon.

Opening your inner artist
The vertical toolbar on the left side of Image Editor’s

main window contains all of your graphics-editing

tools. Even though Image Editor doesn’t have all of

the features of a high-priced graphics-editing applica-

tion, you can still make some pretty amazing icons

easily and quickly.

Icon basics

Every pixel in an icon can either be colored or it can

be transparent. Image Editor displays transparent

pixels using a dark teal (blue-green) color. In the de-

fault Borland-supplied icon, the pixels surrounding

the buildings are all transparent pixels.

Bulk erase
If you’re like me and you like starting with a blank

slate, the first thing you’ll want to do is delete all of

the colored pixels. As a novice, I clicked on the eraser

tool and started erasing colored pixels. This was pain-

fully slow because it changed only one pixel at a time.

 Next, I tried the Eye Dropper tool and clicked on

one of the transparent pixels. I then used the Fill tool

(it looks like a pouring paint bucket) to erase large

sections of the same color. This was better than using

the Eraser tool but it still left lots of scattered pixels of

different colors.

 Finally, I tried the Brush tool. That was what I

needed. Because I had previously picked a transpar-

ent pixel with the Eye Dropper tool, I was able to use

the Brush tool to quickly erase large sections of the

palette.

 Later, I discovered I could left-click on the red “S”

near the color palette (Figure E). This is the same as

picking a transparent pixel using the Eye Dropper tool

Volume 9, Number 6—June 2005 (Special Issue) Krauskopf, Custom Icons for Console-Mode Applications

ISSN 1093-2097 6 C++Builder Developer’s Journal

and it’s handy if the icon doesn’t have any transparent

pixels.

Saving
When you're done customizing your icon, you'll no-

tice on the “File” menu that the “Save” and “Save As”

menu choices are grayed-out. To save the icon, you

first need to click on the resource window (Figure C);

you'll then be able to save the icon (and the resource

file).

Seeing your icon
If you go back to C++Builder and then build and exe-

cute your application, you'll be disappointed to see

the old icon. Even if you force the application to build,

you'll still see the old icon! The linker apparently

caches the .RES file. There are two ways to force a

changed resource file to be incorporated into an ex-

ecutable:

1. Remove the resource file from the project and

then add it back again.

2. Close the Borland IDE and launch it again.

Creating 16x16-pixel icons
The Windows Taskbar and the application’s title bar

typically use 16×16-pixel icons. If the only icon avail-

able is a 32×32-pixel icon, Windows will shrink its size

to 16×16 pixels. Sometimes the 32×32-pixel icon does-

n't render well when it's shrunk to 16×16. Likewise, if

the resource file defines only a 16x16-pixel icon, it

might have a “jagged” (aliased) look when it’s ren-

dered as a 32×32-pixel icon. It’s therefore a good idea

to include both 16×16-pixel and 32×32-pixel icons in

your resource file.

On the icon editing window in Image Editor

(shown in Figure D), click on the “New” button to

add a 16×16-pixel icon to the resource. The Icon Prop-

erties window will appear.

Choose the 16×16 (small icon) size and then click

“OK.” A new, empty 16×16-pixel icon is displayed in

the icon editing window. You can easily switch back

and forth between the icons by clicking on the combo

box in the icon editing window (see Figure D).

Installing a resource file (.RES) that contains a

16×16-pixel icon is the same as installing it with a

32×32-pixel icon:

1. Save the resource file.

2. Remove the resource file from the project.

3. Add it back into the project.

4. Build or make the application.

Making it easier
After you’ve erased all of the pixels from an icon, save

the resource file in an easy-to-find location (I chose

the ICONS/ directory in the C++Builder root direc-

tory).

 The next time you need to customize an icon,

launch Image Editor and open the empty resource file

that you previously saved. You can safely overwrite

the .RES file in your project but you’ll still need to use

the remove/add trick to make the linker realize that

the .RES file has been changed.

Conclusion
Custom icons help to differentiate your console-mode

applications at run-time and when they are picked

from Windows Explorer. Creating a custom icon is

easy. When you’re ready to distribute your executa-

ble, the Borland C++ compiler incorporates the icon

resource into the executable so you don’t need to pro-

vide any other files.

Contact Curtis at curtis@decompile.com.

Figure Figure Figure Figure EEEE

Click on the red swooping “S” in the color palette to

create transparent pixels in the pixel editor.

Volume 9, Number 6—June 2005 (Special Issue) Doerres, Putting it on the Line

C++Builder Developer’s Journal 7 www.bcbjournal.com

 colleague at my office and I were working on

a project recently that entailed processing

groups of files. Each small group of files was

handled the same way, namely, dragging the file-

names from a directory window to the window that

did the processing. He said “Golly, if I know what

files I want the program to work on ahead of time,

why can’t I just tell the program what I want it to do

when it starts? Why do I have to load the GUI (Graphi-

cal User Interface) each time?” Good question indeed.

What he was really asking about was the traditional

user command line interface. This allows a user to

pass parameters to a program as the program begins.

 In the pre-Windows days, command lines were

routinely used at the console. Computer users used to

type something like

myprogram param1 param2

in a command console window (which used to be the

entire screen!) in order to start the program “mypro-

gram.exe” with the two parameters “param1” and

“param2.”

 In the Windows of today, users simply use the

mouse to select icons which launch the desired pro-

grams. Often, they then need to type additional in-

formation in the window or click buttons in the win-

dow. However, even Windows retains, in an elegant

fashion, the traditional command line which passes

information to a program as it starts. Command lines

continue to be useful, even in a windowed environ-

ment.

The basics of argc and argv
In C and in C++, the start of a program is a function

called main() with a prototype of

intintintint main (intintintint argc, charcharcharchar *argv[])

which returns an integer to the operating system

when the program ends. The first parameter, argc, is

the count of the number of parameters passed to the

program. The second parameter, argv, is an array of

null-terminated strings which denote the command-

line literals. The number of strings (the dimension of

argv[]) is argc. The first string, argv[0], is the full

path-name to the called function.

 For the earlier example, argc would be three, and

we would have something like:

argv[0] = "C:\MYPROGRAM"

argv[1] = "param1"

argv[2] = "param2"

The scope of the values argc and argv is only inside

of the main() function:

intintintint main (intintintint argc, charcharcharchar *argv[])

{

 // argc and *argv[] scope only in here

}

If you try to use argc and argv outside of main(), a

compile-time error will result.

Builder’s version of the
command line
With the exception of a pure console application, the

days of main() are long gone. Builder developers sel-

dom see a main() function. However, the command

A

Putting it on

the Line

By Don Doerres

Doerres, Putting it on the Line Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 8 C++Builder Developer’s Journal

line parameters are still there—they have simply

evolved. Their new names are _argc and _argv (see

also [1]).

 These names are the same as before with the addi-

tion of leading underscores. The scope of the two pa-

rameters is global to a C++Builder project. They are

available everywhere, not just inside of main().

 This brings us to a demonstration project. In

building and executing the demonstration program

associated with this article, one will observe the fol-

lowing: With no command line parameters, the value

_argc will be one as shown in the top edit box of Fig-

ure A. The bottom edit box will show that _argc is

available in subroutines—a major improvement over

the old argc!

 The memo box is filled with the strings from

_argv by using the following code:

forforforfor (intintintint i = 0; i < _argc; i++)

 {

 Memo1->Lines->Append(_argv[i]);

 }

By starting the program, there is no command line

and there are no command-line arguments other than

_argv[0], which is the full path name of the executa-

ble program.

 Pressing the “Show Form2” button yields the out-

put shown in Figure B. Notice that _argc and _argv

are truly global in the project.

Four ways to use the com-
mand line in Windows
The above is a Windows application. Despite the fre-

quent use of icons and toolbars, there are four ways

[2] to instead use a command line in Windows.

Figure Figure Figure Figure AAAA

First demo showing values of argc and argv in Form1.

Figure Figure Figure Figure BBBB

First demo showing values of argc and argv in Form2.

Figure Figure Figure Figure CCCC

Specifying parameters via the Run Parameters dialog.

Volume 9, Number 6—June 2005 (Special Issue) Doerres, Putting it on the Line

C++Builder Developer’s Journal 9 www.bcbjournal.com

 The first way is inside of

the Builder IDE. Choosing

“Run | Parameters” from the

main menu allows the devel-

oper to type in command-line

parameters into the Run Pa-

rameters dialog shown in Fig-

ure C.

 The second way is to en-

ter the command-line pa-

rameters after the executable

name in a console window as

shown in Figure D.

 The third way is to enter

the parameters into the

“Open” edit box from the

Windows “Start | Run”

menu; this approach is dem-

onstrated in Figure E. Again,

enclose the path to the execu-

table in double quotes.

The fourth way is to enter

the command-line parameters

into the “Target” edit box of a

shortcut properties window

as shown in Figure F. Simply

create a shortcut to the executable, and then edit the

“Target” box. Notice that the full path name for the

executable is in double quote marks. Do not enclose

the individual parameters in the same set of quotes or

Windows will protest that it cannot find the file.

Figure Figure Figure Figure DDDD

Specifying parameter via the command line.

Figure Figure Figure Figure FFFF

Specifying parameters via a shortcut’s properties.

Figure Figure Figure Figure EEEE

Specifying parameters via the Windows Run dialog.

Doerres, Putting it on the Line Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 10 C++Builder Developer’s Journal

Some Final Comments
It is the case that the _argc and _argv parameters are

available as soon as the project starts. This is where

the information in the constructor of the main form is

used.

 It is difficult to find a reference to Windows com-

mand lines, but the rules are fairly simple:

1. The file-name is enclosed in double quotation

marks.

2. Individual parameters after the double-quote-

delimited file-name are simply separated by

white space (spaces or tabs).

3. A multiple-word string must be enclosed in

double quotes.

A simple example of all three rules is:

“aFile.exe” param1 “param2 string with

spaces” param3

Builder command-line parameters work well in appli-

cations repetitively. Command-line parameters avail-

able in an application are often much easier on the

user than refilling edit boxes.

Contact Don at trundlar@cox.net.

References
1. See also the ParamStr() and ParamCount() VCL

functions in the BCB help files.

2. A fifth method of specifying command-line pa-

rameters is to drop a file directly onto the execu-

table; see also “Secondary Desktops” later in this

issue.

Did you know Did you know Did you know Did you know that you can

check your subscription’s expcheck your subscription’s expcheck your subscription’s expcheck your subscription’s expi-i-i-i-

rationrationrationration date by logging in at

http://bcbjournal.com?

If you’ve forgotten your passwordforgotten your passwordforgotten your passwordforgotten your password, please

visit http://bcbjournal.com/login_help.php

and a new password will be e-mailed to you.

Version 3.0 Version 3.0 Version 3.0 Version 3.0 of our popular aaaar-r-r-r-

chive CDchive CDchive CDchive CD is now available! This

new and expanded version

covers all of Volumes 1-8

(1997-2004)!

For more information, please visit:

http://bcbjournal.com/archive_cd.php.

Time to renew? We've got a special packagespecial packagespecial packagespecial package

just for you: A 12-month subscription to the

Journal plus an archive CD for $77 (save

$17). For more information, please visit:

http://bcbjournal.com/subscriptions.php.

Volume 9, Number 6—June 2005 (Special Issue) Smith, Redirecting Console Output

C++Builder Developer’s Journal 11 www.bcbjournal.com

omplex applications quite often incorporate

tools from third-party vendors to perform an

external task. As an example, I was once

working with a proprietary DBMS that re-

quired the execution of several console applications,

each with several command-line switches. To ensure

the task was performed in a reproducible manner we

executed these tasks via a batch file. After spending

countless hours designing our award-winning GUI (at

least we thought so) the last thing we wanted was the

presence of a DOS window flashing on-screen send-

ing numerous lines of text to a scrolling window.

What we needed was the ability to run the batch file

and redirect the console output to our GUI controls. In

this article I’m going to show you how this was ac-

complished. The source code provided with this arti-

cle includes a reusable object called TConsoleRedi-

rect that you are free to use in your own projects [1].

 We’ll start by looking at how TConsoleRedirect

wraps the execution of the batch file as this is where

we initiate the redirection of the console output. From

there we look at capturing the console output, parsing

it, triggering events to the main application, and wait-

ing for the process to complete.

TConsoleRedirect overview
Console applications use three types of standard

streams for their input and output:

1. stdin—standard input, typically from a key-
board;

2. stdout—standard output, typically to the
screen;

3. stderr—standard error, typically to the screen.

If you’ve used batch files, then you’ve probably heard

of the term redirection. This refers to redirecting the

standard input from a file or standard output to a file.

Refer to [2] for more information on this.

TConsoleRedirect accomplishes redirection of

the stdout and stderr streams by supplying the new

process an anonymous (unnamed) pipe. For those not

familiar with pipes, think of it as a communication

conduit with read and write handles.

Before we go too much further, take a look at List-

ing A for the declaration of TConsoleRedirect. As

you’ll see, it contains only a handful of properties, a

single public Execute() method, and an event that is

triggered every time a new line of text is available.

The properties are self-explanatory so I won’t be dis-

cussing them in detail here. Refer to the source code’s

comments for a full explanation.

 The Execute() method performs most of the

work, all of which can be broken down into six steps:

1. Initialize security attributes for the pipe we are

going to create;

2. Create a pipe to receive data from the process

output and error streams;

3. Configure startup information for the new

process;

4. Create the new process;

5. Read and parse text received from the created

process and raise events in the GUI;

6. Perform a cleanup when the new process has

completed executing.

The implementation of TConsoleRedirect’s Exe-

cute() method is a little long to publish in its entirety

so I urge you to glance over the provided source code

C

Redirecting

Console Output

By Malcolm Smith

Smith, Redirecting Console Output Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 12 C++Builder Developer’s Journal

Listing A:Listing A:Listing A:Listing A: Declaration of TConsoleRedirect

classclassclassclass PACKAGE TConsoleRedirect

{

privateprivateprivateprivate:

 AnsiString FStartingDir;

 AnsiString FApplicationName;

 AnsiString FCommandLine;

 intintintint FYield;

 TConsoleLineEvent FOnConsoleLine;

 TConsoleYieldEvent FOnConsoleYield;

 LPSECURITY_ATTRIBUTES

 InitializeNTSecurityDescriptor(

 SECURITY_DESCRIPTOR &sd,

 SECURITY_ATTRIBUTES &sa);

 voidvoidvoidvoid ProcessReadData(TConsoleBuffer &ABuffer);

 voidvoidvoidvoid ProcessToken(TConsoleBufferCIter IterP,

 TConsoleBufferCIter IterT);

 voidvoidvoidvoid DoConsoleLineEvent(unsigned charunsigned charunsigned charunsigned char *pData,

 unsignunsignunsignunsigned inted inted inted int ALength);

 TConsoleRedirect(constconstconstconst TConsoleRedirect&);

 TConsoleRedirect& operatoroperatoroperatoroperator=(

 constconstconstconst TConsoleRedirect&);

publicpublicpublicpublic:

 TConsoleRedirect(voidvoidvoidvoid);

 voidvoidvoidvoid Execute(voidvoidvoidvoid);

 __property__property__property__property AnsiString StartingDir =

 {read = FStartingDir, write = FStartingDir};

 __property__property__property__property AnsiString ApplicationName =

 {read = FApplicationName,

 write = FApplicationName};

 __property__property__property__property AnsiString CommandLine =

 {read = FCommandLine, write = FCommandLine};

 __property__property__property__property intintintint Yield =

 {read = FYield, write = FYield};

 __property__property__property__property TConsoleLineEvent OnConsoleLine =

 {read = FOnConsoleLine,

 write = FOnConsoleLine};

 __property__property__property__property TConsoleLineEvent OnConsoleYield =

 {read = FOnConsoleYield,

 write = FOnConsoleYield};

};

at this time. Snippets of the implementation will

be provided as we cover each of the abovemen-

tioned steps.

 Each of the above steps center around a

Win32 API method called CreateProcess().

Explaining each of the above six steps is a little

difficult without first briefly covering the

parameters passed to this method.

First up: CreateProcess()
CreateProcess() is a Win32 API call designed

to create a new process and its primary thread.

The new process runs in the security context of

the calling process. If the calling process is

impersonating another user, this context

information is ignored. If you need to execute

the process as another user then read up on

CreateProcessWithLogonW() at [3]. This is

something I want to look at myself but have not

had an immediate need. Drop me a line if you

think this would make an interesting topic for

discussion.

 CreateProcess() contains ten parameters

in its declaration, which looks like this:

BOOL CreateProcess(

 LPCTSTR lpApplicationName,

 LPTSTR lpCommandLine,

 LPSECURITY_ATTRIBUTES

 lpProcessAttributes,

 LPSECURITY_ATTRIBUTES

 lpThreadAttributes,

 BOOL bInheritHandles,

 DWORD dwCreationFlags,

 LPVOID lpEnvironment,

 LPCTSTR lpCurrentDirectory,

 LPSTARTUPINFO lpStartupInfo,

 LPPROCESS_INFORMATION

 lpProcessInformation

);

I view these parameters as belonging to three distinct

groups:

1. lpApplicationName, lpCommandLine and
lpCurrentDirectory relate to the process you
want to spawn;

2. lpProcessAttributes, lpThreadAttributes,
bInheritHandles, dwCreationFlags, lpEnvi-
ronment and lpStartupInfo control how the
new process will be created;

3. lpProcessInformation contains information
about the new process when it is successfully
created.

Group 1 parameters
The first group of parameters identifies the process to

be spawned, the “current directory” from which it is

to be spawned, and any command-line information

that needs to be passed to the process. For reference,

Volume 9, Number 6—June 2005 (Special Issue) Smith, Redirecting Console Output

C++Builder Developer’s Journal 13 www.bcbjournal.com

TConsoleRedirect includes these properties to cover

this group:

• ApplicationName

• StartingDir

• CommandLine

Group 2 parameters
The second group dictates how the process will be cre-

ated. We only need to set three of these parameters to

non-default values, namely bInheritHandles,

dwCreationFlags, and lpStartupInfo.

 Console applications use the stdin, stdout, and

stderr streams for their input, output, and error-

reporting, respectively. Redirecting the console output

requires we supply our own output and error handles

(via a pipe as you’ll see shortly) to the new process. In

order to do this, we need to tell CreateProcess()

that the new process must inherit our handles. For

this reason we will be setting the bInheritHandles

parameter to true.

 dwCreationFlags controls the priority class for

the new process. The priority class is used by the op-

erating system to schedule thread priorities in the new

process. In TConsoleRedirect I use the recom-

mended default of NORMAL_PRIORITY_CLASS.

Finally, lpStartupInfo is a pointer to a STARTU-

PINFO structure [4]. Amongst other things, this struc-

ture contains these three handles: hStdInput,

hStdOutput, and hStdError. When we create our

process we will be setting hStdOutput and hStdError

to point to our new pipe.

Group 3 parameters
The last group provides resultant information (handles

and numerical identifiers) about the new process and

its main thread. We use this information to determine

when the process has completed its task.

Putting it all together
With the bare-bones information about CreateProc-

ess() out of the way, let’s now work through each

stage and put the pieces together.

Initializing security attributes
When providing a process with a pipe to replace the

standard input, output, or error streams, the new

process must inherit the handles of the new pipe, oth-

erwise the process will revert to using the default

stdin, stdout, and stderr streams.

 As already mentioned, TConsoleRedirect uses

CreateProcess() to create the new process. We’ve

also mentioned that we set the bInheritHandles pa-

rameter to true. This ensures that all inheritable han-

dles are inherited. This implies that when we create

our pipe, the handles of that pipe need to be inherit-

able.

 In the second stage (to be discussed shortly) we

use another Win32 API method called CreatePipe()

to create our anonymous pipe. One parameter to this

call is a pointer to a struct of type SECU-

RITY_ATTRIBUTES. This parameter tells CreatePipe()

if the handle it returns can be inherited by child proc-

esses.

 SECURITY_ATTRIBUTES is defined as this:

typedeftypedeftypedeftypedef structstructstructstruct _SECURITY_ATTRIBUTES {

 DWORD nLength;

 LPVOID lpSecurityDescriptor;

 BOOL bInheritHandle;

} SECURITY_ATTRIBUTES;

TConsoleRedirect initializes this structure as follows:

SECURITY_DESCRIPTOR sd = { 0 };

SECURITY_ATTRIBUTES sa = { 0 };

LPSECURITY_ATTRIBUTES lpsa =

 InitNTSecurityDescriptor(sd, sa);

where InitNTSecurityDescriptor() is imple-

mented like so:

LPSECURITY_ATTRIBUTES

TConsoleRedirect::InitNTSecurityDescriptor(

 SECURITY_DESCRIPTOR &sd,

 SECURITY_ATTRIBUTES &sa)

{

LPSECURITY_ATTRIBUTES lpsa = NULL;

OSVERSIONINFO osv;

osv.dwOSVersionInfoSize =

 sizeofsizeofsizeofsizeof(OSVERSIONINFO);

::GetVersionEx(&osv);

// NT-based platform

ifififif(osv.dwPlatformId ==

 VER_PLATFORM_WIN32_NT)

 {

 ::InitializeSecurityDescriptor(&sd,

 SECURITY_DESCRIPTOR_REVISION);

 ::SetSecurityDescriptorDacl(&sd, truetruetruetrue,

 NULL, falsefalsefalsefalse);

Smith, Redirecting Console Output Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 14 C++Builder Developer’s Journal

 sa.nLength = sizeof(SECURITY_ATTRIBUTES);

 sa.bInheritHandle = truetruetruetrue;

 sa.lpSecurityDescriptor = &sd;

 lpsa = &sa;

 }

returnreturnreturnreturn lpsa;

}

Because CreatePipe() needs to create an inheritable

handle, the lpSecurityDescriptor member of SECU-

RITY_ATTRIBUTES will need to point to a security de-

scriptor that indicates this requirement. A full discus-

sion of security descriptors is beyond the context of

this article but the main points to make about the

above code are the following:

• TConsoleRedirect requires an NT-based oper-

ating system (please refer to the section “Some

finer points of the implementation” for informa-

tion relating to non-NT-based systems);

• The bInheritHandle member of the security at-

tribute is set to true.

If you’d like to know more about security descriptors

and attributes, refer to [5] at MSDN.

Creating a pipe
Now that we’ve initialized our security attributes

structure, it’s time to create the anonymous pipe. This

is achieved with these few lines of code:

HANDLE hReadPipe = INVALID_HANDLE_VALUE;

HANDLE hWritePipe = INVALID_HANDLE_VALUE;

::CreatePipe(

 &hReadPipe, &hWritePipe, lpsa, 0

);

If CreatePipe() is successful it will have created an

anonymous pipe and provided the read and write

handles of the pipe. The last parameter in Cre-

atePipe() indicates the size of the buffer to be used

for the pipe. I’m using a value of zero which instructs

the operating system to use a default size.

 Now we need to prepare the startup information

that will be used by CreateProcess().

Setting startup parameters
The STARTUPINFO struct is used by CreateProc-

ess() to control several aspects about the new proc-

ess, including the window station, desktop, standard

handles, and appearance of the main window in the

new process. We are interested only in these latter two

items. The initialization of our STARTUPINFO struct

therefore looks like this:

STARTUPINFO si;

memset(&si, 0, sizeof(STARTUPINFO));

si.cb = sizeof(STARTUPINFO);

si.dwFlags = STARTF_USESHOWWINDOW |

 STARTF_USESTDHANDLES;

si.wShowWindow = SW_HIDE;

si.hStdOutput = hWritePipe;

si.hStdError = hWritePipe;

The first three lines declare and initialize the contents

of the structure. The dwFlags member must be initial-

ized with STARTF_USESSHOWWINDOW if the wShowWin-

dow member is to have an effect. We are making the

new process non-visible. Similarly, dwFlags must also

be initialized with STARTF_USESTDHANDLES if we want

our pipe to be used in place of the standard output

and error streams. This replacement can be seen with

the assignment to the hStdOutput and hStdError

members. STARTUPINFO also includes a hStdInput

member but we do not require this for our needs.

 Everything required to create the process and re-

direct the console output to our pipe is now in place.

So, let’s move onto creating the process.

Creating the process
Listing B provides an extract of code from TConsol-

eRedirect which shows how the pieces are placed

together to create the new process.

If the creation of the new process is successful, the

local variable pi (of type PROCESS_INFORMATION) will

receive information about the new process. In particu-

lar, we will have access to the handle of the process.,

which allows us to test to see if the process has com-

pleted its task. This will be explained in greater detail

a little later.

 First, it’s time to look at how we capture data

from the pipe, parse it, and then present it to the GUI

via an event handler.

Reading and parsing received data
Capturing data in the pipe involves the use of two

simple API calls: PeekNamedPipe() and ReadFile().

PeekNamedPipe() checks to see if there are any data

available in the pipe without removing it. If data are

Volume 9, Number 6—June 2005 (Special Issue) Smith, Redirecting Console Output

C++Builder Developer’s Journal 15 www.bcbjournal.com

Listing B:Listing B:Listing B:Listing B: Creating the new process

PROCESS_INFORMATION pi = { 0 };

ifififif(::CreateProcess(

 // application name

 FApplicationName.c_str(),

 // command line

 FCommandLine.c_str(),

 // default process security attributes

 NULL,

 // default thread security attributes

 NULL,

 // inherits handles

 truetruetruetrue,

 // creation flags

 NORMAL_PRIORITY_CLASS,

 // environment block

 NULL,

 // starting directory

 FStartingDir.c_str(),

 // STARTUPINFO

 &si,

 // PROCESS_INFORMATION

 &pi))

 {

 // process is now created...

 }

available, then ReadFile() is used to read the data

and remove the contents from the pipe.

 TConsoleRedirect uses a typedef called TCon-

soleBuffer to represent a std::vector of unsigned

char:

typedeftypedeftypedeftypedef std::vector<unsigned charunsigned charunsigned charunsigned char>

 TConsoleBuffer;

Two instances of this type are used within the Exe-

cute() method of TConsoleRedirect:

TConsoleBuffer CachedLine;

TConsoleBuffer Buffer(BlockSize, ' ');

CachedLine is used to buffer received data until a full

line of text (defined as ending in \r\n) is received.

This buffer grows dynamically as required.

 Buffer, on the other hand, is a fixed-size buffer

used to store data captured from the pipe. This data is

then copied/appended to CachedLine and processed

as required.

It’s important to note here that our std::vector

of unsigned char is equivalent to an array such as:

// BlockSize = 1024

unsigned charunsigned charunsigned charunsigned char Buffer[1024];

By using a std::vector (guaranteed to be imple-

mented as a single contiguous block of memory), we

have the advantage of being able to specify the buffer

size at run-time (by changing BlockSize). Also, if we

later decide to modify our design such that Buffer

can dynamically change size at run-time, then we al-

ready have the mechanism in place.

 Checking for the availability of data in the pipe is

achieved with this line of code:

::PeekNamedPipe(

 hReadPipe, // pipe identifier

 pBuffer, // pointer to our buffer

 BlockSize, // available block size

 &BytesRead, // number of bytes read

 &TotalBytes, // total bytes available

 NULL // bytes left (N/A)

);

PeekNamedPipe() can be used in two ways. First, it

can be used to determine how many bytes of data are

available in the pipe without actually reading them.

Secondly, it can be used to determine the number of

available bytes as well read the available data into a

buffer without removing them from the pipe. I’m us-

ing this latter approach because it allows me to check

for the existence of an end-of-line token (\r\n) and

read only the data I’m interested in. I could read the

entire contents of the pipe, but then the implementa-

tion of the parsing would be a little more involved.

 Assuming data are available for reading, the fol-

lowing code is executed to read and parse it:

// point to first byte of buffer

unsigned charunsigned charunsigned charunsigned char *pBuffer = &(Buffer[0]);

ifififif(BytesRead)

 {

 BytesToRead = BytesRead;

 OrigBytesRead = BytesToRead;

 BytesRead = 0;

 // find where the last \r\n is located

 // and modify the value of BytesToRead

 whilewhilewhilewhile(BytesToRead > 0 &&

 (*(pBuffer + BytesToRead - 1) !=

 '\n'))

 --BytesToRead;

 ifififif(BytesToRead == 0)

 {

Smith, Redirecting Console Output Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 16 C++Builder Developer’s Journal

 // an incomplete line of text has

 // been captured so we will store

 // it and wait for more

 ::ReadFile(hReadPipe, pBuffer,

 OrigBytesRead, &BytesRead,

 NULL);

 // store contents in CachedLine

 // for future use

 std::copy(

 pBuffer, pBuffer + BytesRead,

 std::back_inserter(CachedLine)

);

 }

 elseelseelseelse

 {

 // we have one or more lines

 // of data to process

 ::ReadFile(hReadPipe, pBuffer,

 BytesToRead, &BytesRead, NULL);

 // append the read line onto CachedLine

 std::copy(

 pBuffer, pBuffer + BytesRead,

 std::back_inserter(CachedLine)

);

 ifififif(FOnConsoleLine)

 ProcessReadData(CachedLine);

 CachedLine.clear();

 }

 }

First up, the while loop in this code determines

whether there is an end-of-line token. Specifically,

starting from the end of the buffer and working

backwards, the while loop searches for a newline

character. If one is not located (the loop exits with

BytesToRead equal to zero) then we have an incom-

plete line of text. In this situation, the full buffer is

read via the ReadFile() Win32 function, and then the

read data are stored in CachedLine by using the

std::copy() function.

 On the other hand, if the previously mentioned

while loop located a newline character, then the con-

tents up to and including the newline character are

read and appended to CachedLine. Next, if an event

handler is assigned to FOnConsoleLine, the captured

data are parsed via ProcessReadData(), after which

the CachedLine buffer is cleared.

ProcessReadData() takes CachedLine and

searches for multiple lines of text. Each line of text

located is then processed via ProcessLine() where

the buffered data are copied to an AnsiString and

sent to the GUI via the event handler. ProcessRead-

Data() and ProcessLine() are shown in Listing C

and D respectively.

 This procedure continues until no more data are

available for reading and the process has completed.

As discussed next, detection of process completion is

achieved by using WaitForSingleObject().

Waiting for the process to finish
The pseudo-code below represents the internal proc-

essing performed by TConsoleRedirect once the new

process is running:

ifififif(CreateProcess())

 {

 forforforfor(;;)

 {

 ifififif(PipeContainsData)

 {

 // Read and parse data

 }

 elseelseelseelse

 {

 ifififif(::WaitForSingleObject(pi.hProcess,

 0) == WAIT_OBJECT_0)

 breakbreakbreakbreak;

 }

 }

 }

There is an infinite loop that continuously checks for

data to read from the input handle of the pipe. If there

are no data to read, then a check is made to see if the

process has completed its task. This is achieved by

checking if the return value of WaitForSingleOb-

ject() equates to the constant WAIT_OBJECT_0. When

this state is reached, the process is finished and the

code breaks from the loop. TConsoleRedirect has

completed its task.

Some finer points
Due to the amount of code implemented in TConsol-

eRedirect, I cannot publish all of it on these pages. I

do however ask that you take a few minutes to look at

the code to observe some of the finer details in the

implementation—all of which help make the code

safer to use.

Limitations
TConsoleRedirect is designed primarily for NT-

based operating systems. I have not personally tested

Volume 9, Number 6—June 2005 (Special Issue) Smith, Redirecting Console Output

C++Builder Developer’s Journal 17 www.bcbjournal.com

Listing D:Listing D:Listing D:Listing D: Processing a line of text

voidvoidvoidvoid TConsoleRedirect::ProcessLine(

 TConsoleBufferCIter IterP,

 TConsoleBufferCIter IterT)

{

staticstaticstaticstatic AnsiString ALine;

TConsoleBuffer::difference_type Distance =

 std::distance(IterP, IterT);

ifififif(Distance == 0)

 {

 // must have been a blank line

 ALine = "";

 FOnConsoleLine(thisthisthisthis, ALine);

 }

elseelseelseelse

 {

 ALine.SetLength(Distance);

 memcpy(ALine.c_str(), IterP,

 Distance);

 FOnConsoleLine(thisthisthisthis, ALine);

 }

}

Listing C:Listing C:Listing C:Listing C: Processing data read from the pipe

voidvoidvoidvoid TConsoleRedirect::ProcessReadData(

 TConsoleBuffer &ABuffer)

{

TConsoleBufferIter IterB = ABuffer.begin();

TConsoleBufferIter IterE = ABuffer.end();

TConsoleBufferIter IterF;

whilewhilewhilewhile((IterB != IterE) &&

 (IterF = std::find(IterB, IterE, '\r'))

 != IterE)

 {

 ProcessLine(IterB, IterF);

 // update the starting location

 IterB = IterF;

 // skip over the '\r'

 ++IterB;

 // if the next char is a '\n', skip over it;

 // don't skip over others (blank lines)

 ifififif((IterB != IterE) && (*IterB == '\n'))

 ++IterB;

 }

// one last check in case the end of the

// line did not end with /r/n

ifififif(IterB != IterE)

 ProcessLine(IterB, IterE);

}

TConsoleRedirect under Windows 95 or 98 but from

what I’ve read at [6][7][8] it should work as long as

you are executing only 32-bit processes. You might

also find the alternative approach at [9] to be informa-

tive reading.

Exceptions
In most cases (but not all) I have elected to check the

return value from the Win32 API calls and throw a

custom exception (as defined in my MJFAF library) in

preference over aborting the operation (by just return-

ing). I’ve made an assumption that once the initial

startup pre-conditions are met everything will be fine

from that point onward. As is, the code will suit the

majority of circumstances.

Guards
The Execute() method of TConsoleRedirect ulti-

mately ends up with four handles that need closing at

the completion of the process. Rather than use nested

try/__finally blocks to protect these resources, you

will find I’m using another class from MJFAF called

THandleGuard. This class uses the RAII design pattern

to ensure the handle is closed when it goes out of

scope.

Terminating the running process
TConsoleRedirect has a OnConsoleYield event that

is called at an interval equal to the Yield property (in

milliseconds) after calling TApplication::Process-

Messages(). This event serves two purposes:

1. The GUI has a chance to repaint itself.

2. You have an opportunity to abort the running

process. The comments in the source code ex-

plain this feature.

An exercise for the reader (or me)
I have an extreme dislike for making calls to Appli-

cation->ProcessMessages(), especially in multi-

threaded applications. A nice enhancement to the

provided code would be to place the execution of the

new process within a worker thread. Not only would

it eliminate calling TApplication::Process-

Messages() but you would also be capable of running

the process asynchronously.

Smith, Redirecting Console Output Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 18 C++Builder Developer’s Journal

 I initially leave this as an exercise for the reader.

If, however, I receive enough requests from readers

then I’ll make this enhancement and make it available

for all subscribers.

Hint, hint: I’d love to hear your comments regard-

ing the topics being covered in recent months. I have a

huge list of topics already lined up for the forthcom-

ing months, but please feel free to drop me a line if

you have something that would benefit other readers

as well.

Conclusion
Even as operating systems become more and more

advanced, we sometimes still take advantage of sim-

ple features such as batch files. The downside to exe-

cuting batch files is that they invoke console windows

which may not fit into the design and layout of your

GUI applications. This article demonstrated how to

eliminate this annoyance by redirecting the stdout

and stderr streams, and by providing the captured

text to the GUI via an event handle.

 We also looked at some of the inner details asso-

ciated with the Win32 API calls being made. Hope-

fully this has provided a more complete understand-

ing of what is being performed under the hood, which

ultimately helps in your understanding of how certain

tasks are achieved within the Windows environment.

Contact Malcolm at msmith@bcbjournal.com.

References
1. TConsoleRedirect is part of my MJFAF so please

read the copyright notice in the source code.

2. Information about the command processor shell

and input/output redirection can be found at

http://tinyurl.com/5w8z8

3. http://tinyurl.com/5yrhl

4. STARTUPINFO is fully detailed at

http://tinyurl.com/4yag8

5. http://tinyurl.com/5awg8

6. http://tinyurl.com/3wczm

7. http://tinyurl.com/3uzco

8. http://tinyurl.com/4txg6

9. http://tinyurl.com/guro

We welcome and We welcome and We welcome and We welcome and

appreciate your appreciate your appreciate your appreciate your

feefeefeefeeddddback on this back on this back on this back on this

SpSpSpSpeeeecial Issue!cial Issue!cial Issue!cial Issue!

Please send any comments to

editor@bcbjournal.com or post your com-

ments to http://forums.bcbjournal.com.

Have a question or comment?Have a question or comment?Have a question or comment?Have a question or comment?

Visit our online forums at

http://forums.bcbjournal.com.

Volume 9, Number 6—June 2005 (Special Issue) Finkle, Creating an HTML User Interface

C++Builder Developer’s Journal 19 www.bcbjournal.com

TML allows for the creation of clean, simple

and usable interfaces. More and more desk-

top applications are employing HTML in the

user interface (UI). Other applications are using modi-

fied Windows controls made to look like HTML ele-

ments, such as labels that look like hyperlinks.

HTML in desktop applications
There are various levels of HTML interactivity that

can be used in a desktop application:

1. Static display: Simple, richly formatted text area

used for display-only purposes.

2. Basic interactivity: Richly formatted text with

hyperlinks used to execute an action in the ap-

plication.

3. Deep interactivity: HTML-based forms with

controls tied to application code and data.

C++Builder includes the TCppWebBrowser component,

which allows developers access to the same HTML

rendering system used in Internet Explorer. The com-

ponent is a VCL wrapper around the WebBrowser

ActiveX control. As such, it does not contain some

features you would expect from a native VCL control.

Simple features you might expect to find include:

• Loading/saving the contents using a TStream

• Controlling the border

• Controlling the background color

• Access to DHTML events

One of the goals of this article is to create a simple

TFrame-based wrapper for TCppWebBrowser that adds

some convenient features which make it easy to create

an HTML UI.

Loading HTML
No matter what level of interactivity your applica-

tions needs, the first step is usually getting HTML into

TCppWebBrowser. Static display and basic interactivity

can be handled by TCppWebBrowser fairly well. If

your HTML content is stored in a file, you can always

use the Navigate or Navigate2 methods of TCppWeb-

Browser as shown below:

wbBrowser->Navigate(

 WideString("file://c\path\text.htm"),

 TVariant(::navNoHistory));

The ::navNoHistory flag is used so the file does not

show up in IE’s browser history. If your content is

dynamically generated, a LoadHtmlFromStream()

method would be much more convenient. Though not

included in TCppWebBrowser, it can be implemented

fairly easily:

HRESULT LoadHtmlFromStream(

 TCppWebBrowser* pBrowser,

 TStream* pStream)

{

 IHTMLDocument2* pHTMLDoc;

 HRESULT hr = pBrowser->Document->

 QueryInterface(IID_IHTMLDocument2,

 (voidvoidvoidvoid**)&pHTMLDoc);

 ifififif (SUCCEEDED(hr)) {

 IPersistStreamInit* pPersist = NULL;

 hr = pHTMLDoc->QueryInterface(

 IID_IPersistStreamInit,

 (voidvoidvoidvoid**)&pPersist);

H

Creating an HTML

User Interface

By Mark Finkle

Finkle, Creating an HTML User Interface Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 20 C++Builder Developer’s Journal

 ifififif (SUCCEEDED(hr) && pPersist) {

 hr = pPersist->InitNew();

 ifififif (SUCCEEDED(hr)) {

 TStreamAdapter* pAdapter =

 newnewnewnew TStreamAdapter(pStream,

 soReference);

 hr = pPersist->Load(*pAdapter);

 }

 pPersist->Release();

 }

 }

 pHTMLDoc->Release();

 returnreturnreturnreturn hr;

}

Loading HTML from a resource
There may be circumstances in which you do not

want to load HTML from physical files. HTML files

can be added to your application as resources and

loaded a couple of ways. One way is to access the

HTML resource using a TResourceStream and then

load that stream into a TCppWebBrowser using the

method described above.

 Add your HTML content to your application by

including a resource script (.RC) file to your project.

Add the following code to the .RC file:

IDH_HTMLPAGE_1 HTML DISCARDABLE

 "htmlpage1.htm"

IDH_HTMLPAGE_2 HTML DISCARDABLE

 "htmlpage2.htm"

Load the HTML resource using TResourceStream

and use it to load the browser:

TResourceStream* pStream =

 newnewnewnew TResourceStream((intintintint)HInstance,

 "IDH_HTMLPAGE_1", "HTML");

pStream->Position = 0;

LoadHtmlFromStream(pMyBrowser, pStream);

deletedeletedeletedelete pStream;

A second way of loading the HTML from a resource is

using the res:// protocol. This method is useful for

creating IMG or STYLE links from the main HTML con-

tent to external, supporting content, stored as re-

sources:

<html><body>

 <img src="res://pathtoexe/HTML/

IDH_RESOURCE">

Click here for help

</body></html>

Getting interactive
Using hyperlinks to achieve a basic level of interactiv-

ity is easily accomplished by using pseudo-URL refer-

ences in HTML anchor elements. For example, your

HTML could contain the following content:

<html><body>

 Click here for

help

</body></html>

The HREF in the anchor element is fake, but it can be

used as a text command for your application to act

upon. You can use the OnBeforeNavigate event to

catch any click on the anchor, extract and execute the

command, and cancel the navigation. It’s simple, but

effective. Below is an example of extracting the com-

mand from the HREF string.

void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall TForm1::OnBeforeNavigate(

 TObject *Sender, LPDISPATCH pDisp,

 Variant *URL, Variant *Flags,

 Variant *TargetFrameName,

 Variant *PostData, Variant *Headers,

 VARIANT_BOOL *Cancel)

{

 WideString sURL = (WideString)*URL;

 // Check for a "command"

 ifififif (sURL.Pos(L"app:") == 1) {

 *Cancel = VARIANT_TRUE;

 WideString sCommand =

 sURL.SubString(5, sURL.Length());

 ifififif (sCommand == "displayhelp") {

 // display help

 }

 }

}

Going deeper: Using MSHTML
In order to implement deeper interactivity, we need to

explore the HTML document object model (DOM)

upon which the WebBrowser ActiveX control is built.

Called MSHTML, it is the COM-based system used to

implement the client-side Dynamic HTML (DHTML)

abilities of Internet Explorer. Typically, these features

are used only in client-side JavaScript or VBScript

scripting inside Internet Explorer. However, because

of the way Microsoft implemented those scripting

languages, the HTML DOM is COM and can be ac-

cessed by any COM-enabled development language.

See [1] for documentation.

Volume 9, Number 6—June 2005 (Special Issue) Finkle, Creating an HTML User Interface

C++Builder Developer’s Journal 21 www.bcbjournal.com

 The TCppWebBrowser control provides a way to

access MSHTML COM objects via the Document

property as shown below:

IHTMLDocument2* pDoc2 = NULL;

wbBrowser->Document->

 QueryInterface(IID_IHTMLDocument2,

 (voidvoidvoidvoid**)&pDoc2);

If the QueryInterface() call is successful (content

must be loaded into the control first), the IHTMLDocu-

ment2 interface can be used to do a multitude of dif-

ferent actions. Actually there are several versions of

the IHTMLDocument interface. Each new version adds

different functionality.

Customizing TCppWebBrowser
the MSHTML way
Although MSHTML is the system used to build Inter-

net Explorer, you may not want it to act or look like a

web browser. By implementing the IDocHostUIHan-

dler interface [2], you can control various aspects of

the WebBrowser behavior and appearance. Here is a

short list of things you can affect:

• Display of border and scrollbars.

• Use of Windows XP themes on HTML UI ele-

ments.

• Selection of text with the mouse.

• Control over the default right-click context

menu.

• Expose application specific functions into

JavaScript

The code accompanying this article contains a simple

implementation of IDocHostUIHandler.

Hooking C++ to DHTML events
The VCL framework makes it rather easy to hook C++

code to UI control events. Each control publishes

available events and the developer can hook those

events at design-time or run-time. HTML elements

also expose events. However, hooking those events is

more complicated than the VCL counterparts. The

MSDN reference website has all the details on the

events each type of HTML element exposes [3].

 MSHTML exposes the events through the COM

IDispatch interface. The key to hooking C++ code to

MSHTML events is making a C++ function act like an

IDispatch interface and attaching that interface to the

desired event. The code provided with this article

uses a helper class, CHtmlEvent<>, to handle the

minimum required pieces of IDispatch and forward

an event to a provided C++ method. Here is an exam-

ple of hooking the DHTML onkeydown event to a

method of a TForm-derived class:

// Assume pElement is the HTML element

// you want to hook

// Get IHTMLElement2 to attachEvent

IHTMLElement2* pElement2;

pElement->

 QueryInterface(IID_IHTMLElement2,

 (voidvoidvoidvoid**)&pElement2);

TVariant vFuncObj =

 CHtmlEvent<TMyForm>::Create(tttthishishishis,

 &TMyForm::OnEventCallback,

 DISPID_KEYDOWN);

// Link onkeydown to OnEventCallback

VARIANT_BOOL bSuccess;

pElement2->

 attachEvent(WideString("onkeydown"),

 vFuncObj, &bSuccess);

pElement2->Release();

In this example, anytime the onkeydown event of pE-

lement is fired, TMyForm::OnEventCallback is called.

Calling C++ from JavaScript
In DHTML, much of the dynamic capabilities are

made possible by JavaScript. Your HTML content can

also use JavaScript to implement dynamic features

without ever needing to resort to calling C++. You

could write as much of the event-based code needed

by your UI in JavaScript, where things are simpler

and well documented. You would then only need to

call into C++ to execute actions or commands that af-

fect the application. MSHTML provides a way to do

this via the window.external() method. The trick is

exposing your C++ objects as IDispatch-based COM

objects and providing the interface through the IDo-

cHostUIHandler::GetExternal() method. The code

provided with the article does this using the simple

IDocHostUIHandler implementation and the CHtml-

External<> base class.

Finkle, Creating an HTML User Interface Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 22 C++Builder Developer’s Journal

 First, a C++ IDispatch imposter is defined as fol-

lows:

classclassclassclass CMyExternal :

 publicpublicpublicpublic CHtmlExternal< CMyExternal >

{

publicpublicpublicpublic:

 void __stdcallvoid __stdcallvoid __stdcallvoid __stdcall setTitle(BSTR sText);

 BSTR __stdcall__stdcall__stdcall__stdcall upperCase(BSTR sText);

 void __stdcallvoid __stdcallvoid __stdcallvoid __stdcall onDataChange();

BEGIN_DISPATCH_MAP(CMyExternal)

 DISP_METHOD1(setTitle, VT_EMPTY,

 VT_BSTR)

 DISP_METHOD1(upperCase, VT_BSTR,

 VT_BSTR)

 DISP_METHOD0(onDataChange, VT_EMPTY)

END_DISPATCH_MAP()

};

A pointer to an instance of this class is provided to the

IDocHostUIHandler implementation. Then, methods

can be called from within JavaScript:

<script language="javascript">

function doSomething()

{

 window.external.setTitle("From

 JavaScript");

 window.external.onDataChange();

}

</script>

Conclusions
The article source code shows how these different

methods can be used in a simple application (Figure

A shows some screenshots). MSHTML and the Web-

Browser ActiveX control are sizeable technologies.

We have just begun to scratch the surface of what

can be done. Hopefully, this article will help you

begin to explore further. The MSDN website is

good place to start. It has useful reference and tuto-

rial pages.

Contact Mark at mark.finkle@gmail.com.

References
1. MSDN MSHTML reference:

http://tinyurl.com/c9csb

2. MSDN IDocHostUIHandler reference:
http://tinyurl.com/bvepn

3. MSDN DHTML events reference:

http://tinyurl.com/9jyya

Figure Figure Figure Figure AAAA

Screenshots of sample application included with this month’s code.

Volume 9, Number 6—June 2005 (Special Issue) Smith, Secondary Desktops

C++Builder Developer’s Journal 23 www.bcbjournal.com

f you’re writing a security-oriented or kiosk-type

application that demands usage of the entire desk-

top, hides the windows shell, and prevents other

dialogs from polluting the screen, then a secondary

desktop is what you require.

 A secondary desktop, also known as a private

desktop, is actually the combination of a window sta-

tion and a desktop. Each of these terms is important to

understand so we’ll start by looking at what they are.

 (Note that secondary desktops are not available

on operating systems below Windows NT 3.51. The

source code provided with this application has been

tested under Windows 2000 and Windows XP.)

Window Stations
A window station is a securable object associated with

a process. Each window station contains a clipboard,

atom table [1], and one or more desktops. When win-

dow stations are created they must be given unique

names to differentiate them.

 The system contains what is known as the interac-

tive window station that goes by the name of Winsta0.

This is the only window station capable of displaying

a user interface or receiving user input. It is automati-

cally assigned to the logon session of the interactive

user, and it contains the keyboard, mouse, and video

display.

 Window stations created by you will always be

non-interactive. In other words, they cannot be used

to display user interfaces or receive user input. As we

are interested in creating interactive desktops I will

not be covering the creation of new window stations.

Further information on this subject can be obtained

from MSDN [2].

Desktops
A desktop is a securable object which, when created,

is associated with the current window station of the

calling process and assigned to the calling thread (an

important fact to remember for later).

 Each desktop has a logical display surface capable

of displaying dialogs and other user interface items. If

you need to send messages, or hook messages in-

tended for other windows, this can be achieved only

between processes that exist on the same desktop.

 Desktops associated with WinSta0 can all display

a user interface and receive user input, but only one of

the desktops can be active at any given time. The cur-

rently active desktop is known as the input desktop. By

default, WinSta0 contains three desktops:

1. Default—created when the user logs on;

2. Disconnect—used by Terminal Services [3];

3. Winlogon—created for users to log on.

Before we begin
The previous sections were short in their description,

but they provide enough background information for

creating simple secondary-desktop applications. I say

“simple” because non-interactive processes, such as

services, are trickier to deal with (especially when

they are running under a different user account).

 There are just over a dozen API functions avail-

able for desktop creation and management. Most of

them are used in the two demo applications provided

with this article. A complete list of functions is pro-

vided at MSDN [4].

I

Secondary Desktops

By Malcolm Smith

Smith, Secondary Desktops Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 24 C++Builder Developer’s Journal

Listing A:Listing A:Listing A:Listing A: Declaration of TDesktopThread

classclassclassclass TDesktopThread;

typedef void __fastcalltypedef void __fastcalltypedef void __fastcalltypedef void __fastcall

 (__closure__closure__closure__closure *TOnDesktopThreadEvent)

 (TDesktopThread *Sender,

 constconstconstconst TDesktopData &AData,

 HDESK ADesktopHandle);

typedef void __fastcalltypedef void __fastcalltypedef void __fastcalltypedef void __fastcall

 (________closureclosureclosureclosure *TOnDesktopCreatedEvent)

 (TDesktopThread *Sender,

 constconstconstconst TDesktopData &AData,

 boolboolboolbool ASuccess);

classclassclassclass TDesktopThread : publicpublicpublicpublic TThread

{

privateprivateprivateprivate:

 constconstconstconst TDesktopData& FData;

 TOnDesktopThreadEvent FThreadedEvent;

 TOnDesktopCreatedEvent FOnDesktopCreated;

 boolboolboolbool FDesktopCreated;

protectedprotectedprotectedprotected:

 virtualvirtualvirtualvirtual void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall Execute();

 void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall DoOnDesktopCreated();

publicpublicpublicpublic:

 explicit __fastcallexplicit __fastcallexplicit __fastcallexplicit __fastcall TDesktopThread(

 boolboolboolbool CreateSuspended,

 TOnDesktopThreadEvent AThreadedEvent,

 constconstconstconst TDesktopData &AData);

 __property__property__property__property TOnDesktopCreatedEvent

 OnDesktopCreated =

 { read = FOnDesktopCreated,

 write = FOnDesktopCreated };

};

The first demo, DESKTOPLAUNCH, is a menu-

driven interface for creating and switching between

secondary desktops. As you create new desktops, they

are listed under the “Desktops” menu. This menu is

dynamically created and ensures that all desktops

created by the current desktop are listed together.

Desktops created by another desktop are listed under

the “Desktops | Others” menu. This scheme allows

you to determine which desktops are children of the

current desktop.

The second demo uses a small “desktop stub” ex-

ecutable, called DSTUB.EXE, that is designed to create

a secondary desktop and either launch an executable

or load a DLL that displays a main form via a pre-

defined interface. The sample DLL provided, VCLKI-

OSK.DLL, creates a data module and a form that pre-

sents a small database application to the user. When

the application closes, so does the desktop.

Creating desktops
Creating desktops faultlessly can be problematic to

achieve, so I highly recommend you don’t have too

many other applications running while developing

your project (just in case you cannot return to the pri-

mary desktop to close them). Whenever I found

myself stuck in a situation with a new desktop and no

application (because it was on the wrong desktop or it

threw an exception before it was shown) my only op-

tion was to log off or shutdown. Task Manager is visi-

ble only on the Default desktop so it cannot be used to

terminate any running applications.

When I first started creating new desktops, I

found it a bit of a hit-and-miss affair when trying to

determine the correct approach to obtain the desired

results. For this reason, DESKTOPLAUNCH will be used

to explain each of the steps required and their order of

execution.

Step 1: Create a worker thread
Each process is associated with the thread in which it

is created. Additionally, newly created desktops are

associated with the calling thread. This tells us we

need to start by creating a new thread that is respon-

sible for creating the secondary desktop and launch-

ing the application to be displayed.

Each of the demo applications use a TThread-

derived class called TDesktopThread. This thread is

designed to create the new desktop and execute the

code (via an event) required to start the new process.

Both of these tasks are performed within the context

of the thread.

I chose to execute the threaded code via an event

handler—rather than within TDesktopThread::Exe-

cute()—for several reasons:

• Calling back into the main form (or other crea-
tor class) allows access to information that only
the creator knows about. This helps to reduce
coupling between the thread class and its crea-
tor.

• The thread class can be reused for different
tasks. This is demonstrated in DSTUB where
the thread launches an application or loads a
DLL depending on the command-line parame-
ters passed to it.

Volume 9, Number 6—June 2005 (Special Issue) Smith, Secondary Desktops

C++Builder Developer’s Journal 25 www.bcbjournal.com

Listing B:Listing B:Listing B:Listing B: TDesktopThread::Execute()

void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall TDesktopThread::Execute()

{

HDESK hNewDesktop = ::CreateDesktop(

 FData.DesktopName.c_str(),

 NULL, NULL, FData.DesktopFlags,

 FData.DesiredAccess, NULL);

FDesktopCreated = (NULL != hNewDesktop);

ifififif(FOnDesktopCreated)

 Synchronize(DoOnDesktopCreated);

ifififif(FThreadedEvent)

 {

 TDesktopGuard AGuardedDesktop(hNewDesktop);

 FThreadedEvent(thisthisthisthis, FData, hNewDesktop);

 }

}

Listing A shows the declaration of TDesktopThread

and Listing B provides the implementation of its Exe-

cute() method.

TDesktopThread’s explicit constructor requires a

pointer to the event handler to be called once the

desktop has been created, as well as some context in-

formation. This context information is sent to the

event handler provided in the constructor.

TDesktopData is a base class containing three

properties: DesktopName, DesktopFlags, and De-

siredAccess. This information is used by TDesktop-

Thread::Execute() to create the desktop which we’ll

look at next.

Step 2: Create the desktop
The first job performed by TDesktopThread is the

creation of the secondary desktop via the API function

CreateDesktop(). Only three parameters are re-

quired: a unique name and two flags that control the

process hooking and security attributes of the desk-

top.

 The flags are made up of standard and generic

access rights. The standard access rights correspond to

operations specific to the desktop, and the generic

access rights relate to objects contained within the

interactive window station of the user’s logon session

(see [6] and [7]). DESKTOPLAUNCH includes a menu

option to create a secondary desktop based on custom

flag values.

 Once the desktop has been created, the OnDesk-

topCreated event is called. The context data and a

Boolean indicating if the desktop was successfully

created are passed as parameters to the event handler.

 The final steps involve switching to the new desk-

top and calling the event you will use to launch an

application (or load a DLL). Switching to the new

desktop is performed via a class called TDesktop-

Guard, which implements the RAII design pattern to

ensure the previous desktop is restored during de-

struction. Here’s the TDesktopGuard constructor:

TDesktopGuard::TDesktopGuard(

 HDESK ANewDesktop)

 : FNewDesktop(ANewDesktop)

{

FOriginalDeskThread =

 ::GetThreadDesktop(GetCurrentThreadId());

FOriginalDeskInput =

 ::OpenInputDesktop(0, falsefalsefalsefalse,

 DESKTOP_SWITCHDESKTOP);

FSwitched = (

 ::SetThreadDesktop(FNewDesktop) &&

 ::SwitchDesktop(FNewDesktop));

}

The constructor starts by obtaining a handle to the

desktop associated with the current thread and stor-

ing it in FOriginalDeskThread. FOriginalDeskIn-

put is then initialized with a handle to the desktop

that is the current input desktop. Finally, SetThread-

Desktop() is used to associate the newly created

desktop with the current thread, and then Switch-

Desktop() is used to switch to the new desktop.

Step 3: Launch another process
At this point, launching another executable will result

in that process being associated with the calling

thread and the new input desktop. This is exactly

what happens when the user-provided event is called

via this line in TDesktopThread::Execute():

FThreadedEvent(thisthisthisthis, FData, hNewDesktop);

Refer to DoDesktopLaunchApplication() in the main

form of DESKTOPLAUNCH to see how the application is

launched.

Step 4: Restore everything
When FThreadedEvent returns (which must not occur

until the called process returns), TDesktopGuard‘s

Smith, Secondary Desktops Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 26 C++Builder Developer’s Journal

destructor is executed, resulting in everything being

restored. Here’s the destructor:

TDesktopGuard::~TDesktopGuard()

{

ifififif(NULL != FOriginalDeskInput)

 ::SwitchDesktop(FOriginalDeskInput);

ifififif(NULL != FOriginalDeskThread)

 ::SetThreadDesktop(

 FOriginalDeskThread);

ifififif(NULL != FNewDesktop && FSwitched)

 ::CloseDesktop(FNewDesktop);

}

The destructor switches back to the previously known

input desktop, then re-associates the thread with the

original desktop, and then closes the secondary desk-

top.

 It’s important to note that if you leave any proc-

esses running when you close the desktop, the opera-

tion will fail. That is, the desktop will hang around

until all processes close. Unless you’re using inter-

process communications to direct them to close, you’ll

need to use the Task Manager (or re-create a new

desktop with the same name) to terminate the proc-

esses.

Using an in-proc approach
Everything covered so far has dealt with launching

another application. This may not be suitable for your

requirements, especially if you want to share informa-

tion between the desktops.

 When I first started playing with secondary desk-

tops, I attempted to create a VCL form and place it on

the new desktop. Unfortunately this does not work

due to the close ties between VCL forms and TAppli-

cation. Don’t despair, however, as I have thought of

an alternative: use a DLL.

 A VCL-based DLL has its own instance of TAp-

plication. This means that you can create your form

within a DLL and show it modally on the new desk-

top (it must be modal because the desktop will be

closed as soon as the function-call returns). The sub-

ject of creating a DLL is beyond the scope of this arti-

cle but will be covered in some near-future articles. If

you need an immediate reference, then check out [5].

 This month’s download includes two projects

that, together, show how to launch a form onto a new

desktop via a DLL. The demo projects are called

DSTUB.EXE and VCLKIOSK.DLL:

• DSTUB is used create a new desktop and then

either launch an executable or call a function

within a DLL depending on the file-name it is

passed.

• VCLKIOSK exports a function with a known

signature and is responsible for creating a form

and showing it modally. This DLL performs no

desktop operations since it is all handled by

DSTUB.

Calling a function from the DLL
DSTUB is a console application requiring one or two

command-line parameters. If one parameter is pro-

vided, then it must be the name of an executable or

DLL. If two parameters are given, then the first pa-

rameter is the name of the desktop to create and the

second must be the name of the executable or DLL. (If

no desktop name is provided, then a default of

“StubDesktop” is used. Refer to the source code for

further details.)

 After examining its command-line parameters,

DSTUB checks to ensure the requested desktop does

not already exist (refer to the source code for how this

is done). Finally, DSTUB calls these two lines:

TStubHelper Stub(DesktopName, FileName);

Stub.Execute(); // waits for return

TStubHelper is a helper class whose Execute()

method creates a new thread, creates the desktop, and

then launches an application or calls a function in a

DLL. Here’s how the TStubHelper::Execute()

method is defined:

intintintint TStubHelper::Execute()

{

TOnDesktopThreadEvent ThreadEvent = NULL;

AnsiString Extension =

 ExtractFileExt(FFileName);

ifififif(Extension.AnsiCompareIC(".dll") == 0)

 ThreadEvent = OnDesktopDLLThread;

ifififif(Extension.AnsiCompareIC(".exe") == 0)

 ThreadEvent = OnDesktopEXEThread;

ifififif(!ThreadEvent)

 FErrorCode =

 Nstuberrors::ERROR_INVALID_FILE_EXT;

Volume 9, Number 6—June 2005 (Special Issue) Smith, Secondary Desktops

C++Builder Developer’s Journal 27 www.bcbjournal.com

ifififif(Nstuberrors::ERROR_OK == FErrorCode)

 {

 std::auto_ptr<TDesktopThread>

 Thread(newnewnewnew TDesktopThread(truetruetruetrue,

 ThreadEvent, FDesktopData));

 ifififif(Thread.get())

 {

 Thread->OnDesktopCreated =

 OnDesktopCreated;

 Thread->FreeOnTerminate = falsefalsefalsefalse;

 Thread->Resume();

 Thread->WaitFor();

 }

 }

returnreturnreturnreturn FErrorCode;

}

This code creates the new TDesktopThread (Thread),

and assigns its ThreadEvent member a different func-

tion depending on the extension of the provided file-

name (.DLL or .EXE). When the thread is resumed, the

desktop is created (refer to Listing B), and then the

appropriate ThreadEvent is called.

 If a DLL is provided to DSTUB, the following

code is called (with error-handling removed for brev-

ity):

typedef void __stdcalltypedef void __stdcalltypedef void __stdcalltypedef void __stdcall

 (*TShowVCLForm)(voidvoidvoidvoid);

void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall TStubHelper::

 OnDesktopDLLThread(

 TDesktopThread *Sender,

 constconstconstconst TDesktopData &AData,

 HDESK ADesktopHandle)

{

HINSTANCE hLib = ::LoadLibrary(

 FFileName.c_str());

TShowVCLForm ShowVCLForm =

 (TShowVCLForm) ::GetProcAddress(

 (HMODULE)hLib, "ShowVCLForm");

ShowVCLForm();

::FreeLibrary(hLib);

}

The TShowVCLForm typedef indicates that the DLL is

required to export a function of the same signature. If

you look at the source code for VCLKIOSK.DLL you

will find ShowVCLForm() implemented as follows:

void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall ShowVCLForm()

{

std::auto_ptr<TfrmKiosk>

 frm(newnewnewnew TfrmKiosk(

 static_caststatic_caststatic_caststatic_cast<TComponent*>(NULL)));

ifififif(frm.get())

 frm->ShowModal();

}

Pretty simple. As for what your form performs, that’s

up to you. The provided demo DLL creates a main

form (TfrmKiosk) and a data module. The form pre-

sents a small database application to store some

password information. It isn’t very flashy but it does

demonstrate that you can perform anything you like

on the secondary desktop.

 The easiest way to test your DLLs is to drag and

drop them onto DSTUB.EXE. DSTUB will be passed

the name of the file as its first parameter. In fact, as a

test, drop a normal executable on top of DSTUB and

watch it appear on a secondary desktop.

Name-mangling issues
As a quick and final note about the function exported

from the DLL, if you export using the __stdcall call-

ing convention your function name will not be man-

gled. For example:

externexternexternextern "C"

{

 DLLAPI void __stdcallvoid __stdcallvoid __stdcallvoid __stdcall ShowVCLForm();

}

If you export using the __fastcall calling conven-

tion, then the name will be prefixed with an @ symbol.

This means your call to GetProcAddress() will be-

come:

TShowVCLForm ShowVCLForm =

 (TShowVCLForm) ::GetProcAddress(

 (HMODULE)hLib, "@ShowVCLForm");

A final warning
Working with secondary desktops is very difficult to

debug when things go wrong. As it is very easy to

lose control, especially when you cannot get back to

the default desktop, I highly recommend you save all

important work before testing your applications. I’ve

had rare occasions in which I lost total control and

needed to power down the computer without safely

logging off.

 To help prevent losing sight of the Default input

desktop, this month's code includes a small watchdog

application that performs 10-second-interval checks to

Smith, Secondary Desktops Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 28 C++Builder Developer’s Journal

see if the input desktop is empty. If it is, then it will

switch you back to the default desktop. This did not

save me from all disasters, but it did save me from

many failures.

 Also, the LAUNCHDESKTOP demo application pro-

vides the ability to create an “Advanced Desktop”

where you specify the exact flags you want to use. I

have coded this section based on the information at

MSDN, but I have not performed extensive testing.

Use at your own risk, but please let me know if you

find any issues or bugs so that I can pass the informa-

tion on to other readers.

Conclusions
Secondary desktops provide you the ability to launch

applications or show modal forms on an alternate

desktop that does not allow the user to access the

windows shell (unless you allow them to execute EX-

PLORER.EXE which will automatically create the

shell). This article described the steps required to per-

form this task and is accompanied by two sample ap-

plications (and a DLL) that demonstrates how to put

the pieces together.

Contact Malcolm at msmith@bcbjournal.com.

Acknowledgements
The code for the watchdog application provided with

this month’s download is a translation from code I

found after reading “Private Desktops & Windows

XP,” published by Dr. Dobbs Journal January 2003 [8].

References
1. Information about atom tables can be found at

http://tinyurl.com/4zx72

2. http://tinyurl.com/8m3tq

3. I could not find this documented on MSDN but I

observed it on my Windows 2000 and Windows

XP machines. MSDN mentions the third desktop

as being called screen-saver which is created when

a secured screen saver is activated, while non-

secured screen savers run on WinSta0\default.

Since the screen saver is not active while the user

is interactive with the desktop, I did not check

further to confirm screen-saver was present.

4. http://tinyurl.com/7fkn3

5. http://tinyurl.com/awjlz

6. http://tinyurl.com/a75ex

7. http://tinyurl.com/aef4p

8. http://tinyurl.com/bposc

Interested in writing for the C++Builder Developer's Interested in writing for the C++Builder Developer's Interested in writing for the C++Builder Developer's Interested in writing for the C++Builder Developer's

Journal? Journal? Journal? Journal? Great! We're always on the lookout for new

authors with fresh ideas. Your article can be a short

as a quick tip or as long as a multipart series. If you

have an idea, please don't hesitate to run it by our

editors. For more information, please visit:

http://bcbjournal.com/authors.php.

Volume 9, Number 6—June 2005 (Special Issue) Chandler, Mouse Gestures

C++Builder Developer’s Journal 29 www.bcbjournal.com

or many Windows applications, the mouse

serves as the primary input device: We use

it to press on-screen buttons, select menus,

navigate to different windows, and select con-

trols within a window, just to name a few uses.

Granted, these operations can also be achieved

(sometimes, more quickly) via the keyboard; but,

for many tasks, working with the mouse is often more

convenient and more intuitive. For example, imagine

browsing the Web using only your keyboard.

 In fact, browsing the Web is a good example of a

situation in which using the mouse is sometimes more

convenient and sometimes more wearisome than us-

ing the keyboard. On the one hand, navigating to dif-

ferent links within a web page is—by far—much eas-

ier by using the mouse. On the other hand (and when

this hand is free), I often find it more convenient to

press the Backspace key rather than moving the

mouse to the top of the browser to press the “Back”

button. And, what about copying and pasting

text/images from a web page into a document? Some-

times I find this task to be more easily accomplished

via the keyboard; other times, I prefer OLE-based

drag-and-drop [1] (as long as I don’t have to drag the

mouse too far).

It seems that the degree of convenience provided

by the mouse is inversely related to the distance that

the mouse cursor has to travel to perform a task. This

is especially true for commonly performed tasks such

as scrolling. It’s not difficult to use a window’s scroll-

bars; the tedious part is moving the mouse cursor all

the way to the edge of a window to get to the scroll-

bars. Indeed, modern mice have addressed this issue

by including a scroll wheel.

 Hardware-based modifications aren’t the only

solution. One can also use short, swift mouse move-

ments—called mouse gestures—to quickly perform

common tasks [2]. In a sense, any task-based mouse

movement can be considered a mouse gesture (e.g.,

dragging a file in Explorer). Here, when I say a

“mouse gesture,” I’m referring to a mouse movement

that’s short, quick, easily performed, and—most im-

portantly—doesn’t require interaction with a particu-

lar GUI element. So, in this article, I’ll show you how

to add basic mouse-gesture support to your applica-

tions.

Overview
As it turns out, creating a C++Builder component that

supports mouse gestures is both extremely simple and

somewhat complex. The three main steps involved in

this process are:

1. Recording—The first step involves capturing and

storing the coordinates of the mouse cursor as the

end-user makes the gesture.

2. Recognizing—The next step is to compare the ges-

ture from Step 1 with a list of known gestures.

3. Responding—The final step is to performing an

action in response to the recognized gesture.

Steps 1 and 3 (recording and responding) are easily

handled by using the TApplicationEvents and

TBasicAction classes, respectively. Specifically, we

can use the TApplicationEvents::OnMessage event

to access the mouse-related messages needed to track

and record the end-user’s mouse movements. And,

we can use the TBasicAction::Execute() method to

invoke a recognized gesture’s corresponding action.

F

Mouse Gestures

By Damon Chandler

Chandler, Mouse Gestures Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 30 C++Builder Developer’s Journal

Step 2 (recognition), on the other hand, is not

quite as easy, simply because humans and computer

mice aren’t perfect—there will always be slight varia-

tions in the mouse movements that comprise a user-

input mouse gesture. Accordingly, we’ll need to cre-

ate a recognition system that provides a decent trade-

off between sensitivity (i.e., the ability to correctly rec-

ognize an intended gesture) and specificity (the ability

to correctly ignore unintended gestures) [3]. Further-

more, the recognition process has to be fast: There’s

little advantage to using mouse gestures if the recog-

nition process is so slow that the end-user can more

quickly invoke the desired action by using traditional

input methods (e.g., via menu commands or key-

strokes).

The following section describes the recognition

system that’s used in this month’s code. Later, I’ll pre-

sent three VCL classes—TMouseGesture, TMouseGes-

tures, and TMouseGestureManager—and I’ll show

how these classes perform the steps of recording, rec-

ognizing, and responding to mouse gestures.

Recognizing gestures
Suppose that we’re given a list of (x,y) coordinates

corresponding to a mouse gesture input by the end-

user; each (x,y) pair in the list denotes the position of

the mouse cursor relative to the top-left corner of the

screen. Also suppose that we have a collection of pre-

defined gestures, each with its own unique list of (x,y)

coordinates. The goal of gesture recognition is to de-

termine which gesture in the predefined collection, if

any, corresponds to the gesture input by the end-user.

For example, if the input gesture is as shown in

the left-hand side of Figure A, and the predefined ges-

tures are as shown in right-hand side of Figure A,

we’d expect the input gesture to be recognized as the

predefined “circle” gesture.

Invariant recognition
Of course, for a human, recognizing the correct ges-

ture is trivial; our visual system has an extraordinary

ability to perform recognition of objects, even of ob-

jects that have undergone various transformations

(e.g., a change in size, or small perturbations in

shape). On the other hand, getting a computer to per-

form this form of invariant recognition is not nearly as

trivial.

 There are various techniques of gesture recogni-

tion, the most common of which uses a grid-based

method that operates by quantizing the (x,y) coordi-

nates to a scaled and indexed grid, and then perform-

ing the matching with respect to the grid indices

[4][5]. Other, more computationally intensive ap-

proaches involve statistical learning algorithms (e.g.,

neural nets) [6].

Here, I’ve taken a different approach: We account

for size differences by first converting the (x,y) coordi-

nates to polar angles [7], then interpolating the list of

angles to a common length. And, we account for small

perturbations in shape by performing a quasi-winner-

take-all match between lists of angles.

Converting to polar coordinates
Recall that an (x,y) coordinate can be viewed as a vec-

tor in a two-dimensional vector space as shown in

Figure B. The (x,y) coordinates specify the vector’s

Figure Figure Figure Figure AAAA

Input Gesture Predefined Gestures

Example input gesture (left) and a set a predefined gestures (right). Finding the best match is trivial for a human, but it’s

not so easily accomplished via code.

Volume 9, Number 6—June 2005 (Special Issue) Chandler, Mouse Gestures

C++Builder Developer’s Journal 31 www.bcbjournal.com

head; and, for simplicity, assume the vector’s tail is

located at the origin (0,0). Alternatively, we can

uniquely specify the vector by its length (denoted by

symbol r), and by its angle relative to the x-axis (de-

noted by symbol θ); see Figure B.

In other words, we can transform the (x,y) rectan-

gular coordinates to (r,θ) polar coordinates via

)/arctan(

22

xy

yxr

=

+=

θ

Note that when x = 0, θ is either +90 degrees (+π/2

radians) or -90 degrees (-π/2 radians), depending on

the sign of y; that is, the vector is either pointing

straight up or straight down, depending on whether y

is positive or negative.

When working with a list of (x,y) coordinates, we

can assume (again, for simplicity) that the vectors are

connected in a “head-to-tail” fashion—i.e., the head

of one vector is also the tail of the next vector. As an

example, consider the gesture shown in Figure C.

This gesture consists of five (x,y) coordinates, and

thus four vectors. The angles of these four vectors,

starting with the bottom-most vector, are: 180 degrees

(π radians), 90 degrees (π/2 radians), 45 degrees (π/4

radians), and 135 degrees (3π/4 radians). Further-

more, because we’re interested in the shape of the

gesture, regardless of its size, we can ignore the vec-

tor lengths (and assume that they’re all r = 1).

Here’s a function that will convert a list of (x,y)

coordinates to a list of angles:

typedeftypedeftypedeftypedef std::vector<floatfloatfloatfloat> TAngles;

typedeftypedeftypedeftypedef std::vector<TPoint> TPoints;

voidvoidvoidvoid PointsToAngles(

 TPoints constconstconstconst& Points,

 TAngles& Angles)

{

 intintintint constconstconstconst num_angles =

 Points.size() - 1;

 ifififif (num_angles < 1)

 {

 throwthrowthrowthrow Exception("Invalid points");

 }

 Angles.clear();

 Angles.reserve(num_angles);

 forforforfor (intintintint idx = 0; idx < num_angles;

 ++idx)

 {

 TPoint constconstconstconst& P0 = Points[idx];

 TPoint constconstconstconst& P1 = Points[idx + 1];

 floatfloatfloatfloat constconstconstconst dy = P1.y - P0.y;

 floatfloatfloatfloat constconstconstconst dx = P1.x - P0.x;

 ifififif (std::abs(dy) > 0 ||

 std::abs(dx) > 0)

 {

 Angles.push_back(

 std::atan2(-dy, dx)

);

 }

 }

}

Figure Figure Figure Figure BBBB

θ

x-axis

y-axis

angle

vector head

@ (x,y)

radius

(vector length)

r

vector tail

@ (0,0)

Vector-space representation of rectangular and polar coor-

dinates.

Figure Figure Figure Figure CCCC

θ

 = 180°

(π radians) θ

 = 90°

(π/2 radians)

θ

 = 45°

(π/4 radians)

θ

 = 135°

(3π/4 radians)

Polar angles of an example gesture.

Chandler, Mouse Gestures Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 32 C++Builder Developer’s Journal

Note that the atan2() function (as opposed to the

atan() function) correctly handles the case in which

the second parameter (dx) is zero. Also note that I’ve

passed -dy as the first parameter to atan2() because

in screen coordinates, the upward direction corre-

sponds to a decrease in the y coordinate.

Interpolating to a common length
After converting the list of (x,y) coordinates to a list of

angles, we can compare the input gesture with each

predefined gesture (each of which also has been speci-

fied in terms of its angles). As I’ll discuss shortly, the

comparison method is extremely simple: We just scan

the list of predefined gestures, and locate the one

whose list of angles most closely matches the input

gesture’s list of angles (where “closest match” is de-

fined as the minimum sum-squared error between

lists of angles).

However, before we can compute the sum-

squared error between two lists of angles, we need to

address the issue of length. Namely, because the input

gesture is provided by the end-user, the length of the

input gesture’s list of angles might be as small as a

single angle, or it might be as large as, say, a length-

1000 list of angles. How should these angles be com-

pared to the predefined gestures which consist of, say,

length-30 lists? We’ll need to ensure that all lists of

angles have a common length.

Here’s a function that will resize a std::vector

of angles (TAngles) to a specified size using nearest-

neighbor interpolation:

voidvoidvoidvoid ResizeAngles(

 TAngles const& Angles,

 TAngles& ResizedAngles,

 intintintint dst_len)

{

 // check the existing lengths

 intintintint constconstconstconst src_len = Angles.size();

 ifififif (src_len == 0)

 {

 throw Exception("Invalid angles");

 }

 elseelseelseelse ifififif (src_len == dst_len)

 {

 ResizedAngles = Angles;

 returnreturnreturnreturn;

 }

 // compute the resizing ratio

 floatfloatfloatfloat constconstconstconst ratio_len =

 static_caststatic_caststatic_caststatic_cast<float>(src_len) /

 static_cstatic_cstatic_cstatic_castastastast<float>(dst_len);

 // if the source and destination

 // vectors refer to the same memory,

 // we need to use a temporary vector

 ifififif (&Angles == &ResizedAngles)

 {

 TAngles TempResizedAngles(dst_len);

 forforforfor (intintintint dst_idx = 0;

 dst_idx < dst_len; ++dst_idx)

 {

 TempResizedAngles[dst_idx] =

 Angles.at(dst_idx * ratio_len);

 }

 ResizedAngles = TempResizedAngles;

 }

 // source and destination vectors use

 // separate memory, so just use them

 elseelseelseelse

 {

 ResizedAngles.resize(dst_len);

 forforforfor (intintintint dst_idx = 0;

 dst_idx < dst_len; ++dst_idx)

 {

 ResizedAngles[dst_idx] =

 Angles.at(dst_idx * ratio_len);

 }

 }

}

Winner-take-all matching
After the lists of angles for all gestures have been re-

sized to a common length, the final step in the recog-

nition process is to locate the closest match. As I men-

tioned, the closest match is defined in the sum-

squared-error sense. Here’s a function that will com-

pute the sum-squared error between two std::vect-

ors of angles:

floatfloatfloatfloat AnglesSSE(

 TAngles constconstconstconst& Angles1,

 TAngles constconstconstconst& Angles2,

 floatfloatfloatfloat current_min_sse)

{

 floatfloatfloatfloat sse = 0;

 intintintint constconstconstconst num_angles = std::min(

 Angles1.size(), Angles2.size()

);

 forforforfor (intintintint idx = 0; idx < num_angles;

 ++idx)

 {

 floatfloatfloatfloat err = std::abs(

 Angles1[idx] - Angles2[idx]

);

 // ensure that the absolute error

 // between two angles never exceeds

 // 180 degrees (pi radians)

 ifififif (err > M_PI)

 {

 err = M_2PI - err;

Volume 9, Number 6—June 2005 (Special Issue) Chandler, Mouse Gestures

C++Builder Developer’s Journal 33 www.bcbjournal.com

Listing A:Listing A:Listing A:Listing A: TMouseGesture declaration

classclassclassclass PACKAGE TMouseGesture :

 publicpublicpublicpublic TCollectionItem

{

__published__published__published__published:

 __property__property__property__property TBasicAction* Action =

 {read=GetAction, write=SetAction};

 ________propertypropertypropertyproperty floatfloatfloatfloat Tolerance =

 {read=Tolerance_, write=Tolerance_};

publicpublicpublicpublic:

 __property__property__property__property TMouseGestureManager* Manager =

 {read=GetManager};

publicpublicpublicpublic:

 __fastcall__fastcall__fastcall__fastcall TMouseGesture(

 TCollection* Collection);

publicpublicpublicpublic:

 TAngles& Angles() { returnreturnreturnreturn Angles_; }

publicpublicpublicpublic:

 virtual floatvirtual floatvirtual floatvirtual float Error(TAngles constconstconstconst& Angles,

 floatfloatfloatfloat current_min_err);

 virtual voidvirtual voidvirtual voidvirtual void Draw(TCanvas& Canvas,

 intintintint cx, intintintint cy, intintintint padding = 4,

 intintintint arrow_size = 8);

privateprivateprivateprivate:

 TBasicAction* __fastcall__fastcall__fastcall__fastcall GetAction();

 void __fastcvoid __fastcvoid __fastcvoid __fastcallallallall SetAction(

 TBasicAction* NewAction);

 TMouseGestureManager* __fastcall__fastcall__fastcall__fastcall GetManager();

privateprivateprivateprivate:

 std::auto_ptr<TActionLink> ActionLink_;

 floatfloatfloatfloat Tolerance_;

 TAngles Angles_;

};

 }

 sse += (err * err);

 // if the running sum-squared error

 // at this point is already greater

 // than the current minimum sum-

 // squared error (as specified by

 // the current_min_sse parameter),

 // there's no need to keep computing

 ifififif (sse > current_min_sse)

 {

 returnreturnreturnreturn 1E10; // error punt

 }

 }

 returnreturnreturnreturn sse;

}

And, here’s some pseudo-code which demo-

nstrates how the AnglesSSE() function is used in

the matching procedure:

min_sse = 1E10;

for eachfor eachfor eachfor each predefined gesture

{

 sse = AnglesSSE(

 InputAngles, PredefinedAngles,

 min_sse

);

 ifififif (sse < min_sse && sse <= tolerance)

 {

 min_sse = sse;

 }

}

returnreturnreturnreturn (

 predefined gesture with min_sse ||

 no gesture if min_sse is 1E10

)

This search procedure is similar to a winner-take-

all scheme [8] in which the input gesture is

mapped to (or “recognized as”) the predefined

gesture whose angles most closely match the input

gesture’s angles. However, this is not a true winner-

take-all approach because the if(sse<tolerance)

check in the above code allows for the possibility that

no one wins. Such a scheme provides a reasonable

tradeoff between sensitivity (true-positive rate) and

specificity (false-positive rate).

Later, I’ll show exactly how the AnglesSSE()

function is used to find the closest matching gesture

(see “Finding a match,” later in this article). But, first,

let me introduce the three mouse-gesture-related VCL

classes: TMouseGesture, TMouseGestures, and

TMouseGestureManager.

TMouseGesture
The TMouseGesture class is a TCollectionItem de-

scendant that’s designed to represent a predefined

gesture and its associated action; Listing A shows the

class declaration. In particular, notice from the pri-

vate section of the class declaration that the

TMouseGesture class has three private members:

• ActionLink_, which is a TActionLink that

supports the TMouseGesture::Action property

(see [9] for information on actions and action

links);

Chandler, Mouse Gestures Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 34 C++Builder Developer’s Journal

• Tolerance_, which is a floating-point value that

specifies the maximum sum-squared error al-

lowed for the gesture to be recognized; this

member is the back-end to the Tolerance prop-

erty.

• Angles_, which is a std::vector of the polar

angles that defines the gesture’s shape.

Here’s the code for the TMouseGesture constructor,

which initializes the ActionLink_ and Tolerance_

members:

__fastcall__fastcall__fastcall__fastcall TMouseGesture::TMouseGesture(

 TCollection* Collection) :

 TCollectionItem(Collection),

 ActionLink_(newnewnewnew TActionLink(thisthisthisthis)),

 Tolerance_(25)

{

}

Again, TMouseGesture is a TCollectionItem de-

scendant, which is designed to be contained within a

TOwnedCollection. A pointer to this TOwnedCollec-

tion (specifically, TMouseGestures, described

shortly) is passed to the class constructor. In turn, the

TOwnedCollection will be contained within a TCom-

ponent (TMouseGestureManager), a pointer to which

is returned via the TMouseGesture::Manager prop-

erty:

inlineinlineinlineinline TMouseGestureManager* __fastcall__fastcall__fastcall__fastcall

 TMouseGesture::GetManager()

{

 returnreturnreturnreturn static_caststatic_caststatic_caststatic_cast

 <TMouseGestureManager*>(

 Collection->Owner()

);

}

The action and action link
Notice from Listing A that the TMouseGesture class

contains an Action property. As I mentioned, this

action is maintained via the private ActionLink_

member:

TBasicAction* __fastcall__fastcall__fastcall__fastcall

 TMouseGesture::GetAction()

{

 returnreturnreturnreturn ActionLink_->Action;

}

void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall TMouseGesture::

 SetAction(TBasicAction* NewAction)

{

 ActionLink_->Action = NewAction;

 ifififif (NewAction != NULL)

 {

 NewAction->

 FreeNotification(Manager);

 }

}

Note that the call to FreeNotification() is required

so that we receive a notification when the action is

destroyed; this allows us to update the Action prop-

erty accordingly. However, FreeNotification()

requires a TComponent* as its single parameter, mean-

ing that only TComponent descendants are notified of

the action’s destruction. Because TMouseGesture is a

TCollectionItem (and not a TComponent), I’ve

passed Manager (rather than the this pointer) to

FreeNotification(). Later, I’ll show you how the

TMouseGestureManager class responds to the “action

destroyed” notification.

The angles
Of course, the most important element of the

TMouseGesture class is its angles which define the

underlying gesture. As shown in Listing A, these an-

gles are retrieved/specified via the Angles() method,

which returns a (non-const) reference to the

std::vector vector of angles (Angles_).

 I’ve also added a method called Error(), which is

designed to return the error between a specified list of

angles and the gesture’s list of angles:

floatfloatfloatfloat TMouseGesture::Error(

 TAngles constconstconstconst& Angles,

 flofloflofloatatatat current_min_err)

{

 returnreturnreturnreturn AnglesSSE(

 Angles_, Angles, current_min_err

);

}

Here, the Error() method simply calls the previously

described AnglesSSE() function. Note, however, that

the Error() method is virtual, so if you later choose

to use a different error metric, you’d just override the

Error() method.

Volume 9, Number 6—June 2005 (Special Issue) Chandler, Mouse Gestures

C++Builder Developer’s Journal 35 www.bcbjournal.com

Listing B:Listing B:Listing B:Listing B: TMouseGestures declaration

classclassclassclass PACKAGE TMouseGestures :

 publicpublicpublicpublic TOwnedCollection

{

publicpublicpublicpublic:

 __property__property__property__property intintintint GestureLength =

 {read=GestureLength_,

 write=GestureLength_};

 __property__property__property__property TMouseGesture* Gesture[intintintint Index] =

 {read=GetItem, write=SetItem};

publicpublicpublicpublic:

 __fastcall__fastcall__fastcall__fastcall TMouseGestures(TPersistent* AOwner);

publicpublicpublicpublic:

 virtualvirtualvirtualvirtual voidvoidvoidvoid NormalizeGestures();

 virtualvirtualvirtualvirtual TMouseGesture* FindGesture(

 TAngles constconstconstconst& Angles);

 TMouseGesture* __fastcall__fastcall__fastcall__fastcall Add()

 {

 return static_castreturn static_castreturn static_castreturn static_cast<TMouseGesture*>(

 TOwnedCollection::Add()

);

 }

protectedprotectedprotectedprotected:

 TMouseGesture* __fastcall__fastcall__fastcall__fastcall GetItem(intintintint Index)

 {

 returnreturnreturnreturn static_caststatic_caststatic_caststatic_cast<TMouseGesture*>(

 TOwnedCollection::GetItem(Index)

);

 }

 void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall SetItem(intintintint Index,

 TMouseGesture* AGesture)

 {

 TOwnedCollection::SetItem(Index, AGesture);

 }

privateprivateprivateprivate:

 intintintint GestureLength_;

};

 In addition, the TMouseGesture class

contains a method called Draw() for drawing

the gesture as a series of arrows to a TCanvas.

I’ll refer you to this month’s source code for

the definition of that method.

TMouseGestures
Now that we have a class that represents a

single mouse gesture, let’s look at the con-

tainer class—TMouseGestures—which is

designed to hold these gestures.

The TMouseGestures class, whose

declaration is provided in Listing B, is a

TOwnedCollection descendant. As I ment-

ioned last month [10], TOwnedCollection is a

TCollection that maintains information about

its owner (in this case, TMouseGestureMan-

ager). A pointer to this owner is specified via

the class constructor:

__fa__fa__fa__fastcallstcallstcallstcall TMouseGestures::

 TMouseGestures(TPersistent* AOwner)

 : TOwnedCollection(AOwner,

 __classid__classid__classid__classid(TMouseGesture)),

 GestureLength_(16)

{

}

Note that in addition to passing AOwner to the

TOwnedCollection constructor, we also pass

information about the type of the to-be-

contained items (TMouseGesture).

GestureLength
In addition to storing multiple TMouseGesture

objects, the TMouseGestures class is also re-

sponsible for resizing each gesture’s list of

angles to a common length. This common length is

specified via the GestureLength property (and the

private GestureLength_ member), and it is used in

the NormalizeGestures() method, like so:

voidvoidvoidvoid TMouseGestures::NormalizeGestures()

{

 intintintint constconstconstconst num_gestures = Count;

 forforforfor (intintintint idx = 0; idx < num_gestures;

 ++idx)

 {

 TAngles& Angles =

 Gesture[idx]->Angles();

 ResizeAngles(

 Angles, Angles, GestureLength_

);

 }

}

Here, we simply use the ResizeAngles() function

that I presented earlier to resize each gesture’s list of

angles to length GestureLength using nearest-

neighbor interpolation.

Chandler, Mouse Gestures Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 36 C++Builder Developer’s Journal

Listing C:Listing C:Listing C:Listing C: TMouseGestureManager declaration

typedef void __fastcalltypedef void __fastcalltypedef void __fastcalltypedef void __fastcall

 (__closure__closure__closure__closure *TMouseGestureEvent)(

 TObject* Sender, TMouseGesture* Gesture,

 constconstconstconst TAngles& Angles, boolboolboolbool& GesHandled);

classclassclassclass PACKAGE TMouseGestureManager :

 publicpublicpublicpublic TComponent

{

__published__published__published__published:

 __property__property__property__property boolboolboolbool Active =

 {read=Active_, write=SetActive,

 defaultdefaultdefaultdefault=truetruetruetrue};

 __property__property__property__property boolboolboolbool AutoExecute =

 {read=AutoExecute_, write=AutoExecute_,

 defaultdefaultdefaultdefault=truetruetruetrue};

 __property__property__property__property TMouseGestures* Items =

 {read=GetItems, write=SetItems};

 __property__property__property__property TMouseGestureEvent OnGesture =

 {read=OnGesture_, write=OnGesture_};

publicpublicpublicpublic:

 __fastcall__fastcall__fastcall__fastcall TMouseGestureManager(

 TComponent* Owner);

protectedprotectedprotectedprotected: // inherited

 virtualvirtualvirtualvirtual void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall Notification(

 TComponent* Component, TOperation Operation);

protectedprotectedprotectedprotected: // introduced

 virtual void __fastcallvirtual void __fastcallvirtual void __fastcallvirtual void __fastcall DoAppMessage(

 MSG& Msg, boolboolboolbool& MsgHandled);

 virtualvirtualvirtualvirtual voidvoidvoidvoid DoRecognize(

 TAngles constconstconstconst& Angles);

privateprivateprivateprivate:

 void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall SetActive(boolboolboolbool NewActive);

 TMouseGestures* __fastcall__fastcall__fastcall__fastcall GetItems()

 {

 returnreturnreturnreturn Gestures_.get();

 }

 void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall SetItems(

 TMouseGestures* NewGestures)

 {

 Gestures_->Assign(NewGestures);

 }

privateprivateprivateprivate: // property-related members

 boolboolboolbool Active_;

 boolboolboolbool AutoExecute_;

 std::auto_ptr<TMouseGestures> Gestures_;

 TMouseGestureEvent OnGesture_;

privateprivateprivateprivate: // recording-related members

 boolboolboolbool Recording_;

 std::vector<TPoint> mouse_coords_;

 TApplicationEvents* AppEvents_;

};

Finding a match
The final duty of the TMouseGestures class is to

perform the search for the closest-matching

gesture, given a (user-input) list of angles. Here’s

the code for that:

TMouseGesture* TMouseGestures::

 FindGesture(TAngles constconstconstconst& Angles)

{

 // find the index of the gesture

 // whose angles are closest to the

 // supplied angles (and also within

 // the gesture's tolerable error)

 intintintint min_idx = -1;

 floatfloatfloatfloat min_sse = 1E10;

 intintintint constconstconstconst num_gestures = Count;

 forforforfor (intintintint idx = 0; idx < num_gestures;

 ++idx)

 {

 floatfloatfloatfloat const sse = Gesture[idx]->

 Error(Angles, min_sse);

 ifififif (sse < min_sse &&

 sse <= Gesture[idx]->Tolerance)

 {

 min_sse = sse;

 min_idx = idx;

 }

 }

 // return either a pointer to the

 // closest gesture or NULL if no

 // gesture was close enough

 ifififif (min_idx >= 0)

 {

 returnreturnreturnreturn Gesture[min_idx];

 }

 returnreturnreturnreturn NULL;

}

TMouseGestureManager
The last component of the mouse-gestures frame-

work is the TMouseGestureManager class, which

is declared in Listing C.

 As its name suggests, TMouseGestureMana-

ger is responsible for managing multiple

TMouseGesture objects. Specifically, the TMouse-

GestureManager class—with help from TMouse-

Gesture and TMouseGestures—performs the

recording, recognizing, and responding steps

mentioned earlier.

Here’s an overview of TMouseGestureMana-

ger’s properties and events:

Volume 9, Number 6—June 2005 (Special Issue) Chandler, Mouse Gestures

C++Builder Developer’s Journal 37 www.bcbjournal.com

• The Active property, which specifies whether

or not gestures should be recorded and recog-

nized.

• The AutoExecute property, which specifies

whether or not recognized gestures should be

responded to (i.e., whether or not the corre-

sponding action of a recognized gesture should

be invoked upon recognition).

• The Items property, which provides access to

the individual gestures.

• The OnGesture event, which is invoked in re-

sponse to both successful and unsuccessful rec-

ognitions.

And, here’s the constructor of the TMouseGesture-

Manager class:

__fastcall__fastcall__fastcall__fastcall TMouseGestureManager::

 TMouseGestureManager(

 TComponent* AOwner) :

 TComponent(AOwner),

 AutoExecute_(truetruetruetrue),

 Gestures_(newnewnewnew TMouseGestures(thisthisthisthis)),

 AppEvents_(newnewnewnew

 TApplicationEvents(thisthisthisthis))

{

 SetActive(truetruetruetrue);

}

As described next, the AppEvents_ member is a TAp-

plicationEvents instance whose OnMessage event

provides access to the (application-wide) mouse mes-

sages needed for recording user-input gestures. The

SetActive() method, which is defined as follows,

simply toggles the OnMessage property:

void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall TMouseGestureManager::

 SetActive(boolboolboolbool NewActive)

{

 ifififif (NewActive)

 {

 AppEvents_->OnMessage =

 DoAppMessage;

 }

 elseelseelseelse

 {

 AppEvents_->OnMessage = NULL;

 }

 Active_ = NewActive;

}

Recording
Before we can recognize a mouse gesture, we first

need to record the (x,y) coordinates input by the end-

user. Specifically, the end-user initiates a “gesture re-

cording” session by (1) pressing and holding down

the right mouse button, then (2) moving the mouse to

input the gesture, and then (3) releasing the right

mouse button [11].

Here, I’ve used a TApplicationEvents object—

and in particular, its OnMessage event—to gain access

to the mouse messages corresponding to these mouse-

related actions. By using the OnMessage event (as op-

posed to the OnMouseDown, OnMouseMove, and On-

MouseUp events of a particular window), we’re able to

record gestures anywhere in the application.

If the Active property is true, the OnMessage

event is assigned the following event handler:

void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall

 TMouseGestureManager::DoAppMessage(

 MSG& Msg, boolboolboolbool& MsgHandled)

{

 switchswitchswitchswitch (Msg.message)

 {

 casecasecasecase WM_RBUTTONDOWN:

 {

 // capture mouse messages

 SetCapture(Msg.hwnd);

 // set the mouse-tracking flag

 Recording_ = truetruetruetrue;

 breakbreakbreakbreak;

 }

 casecasecasecase WM_MOUSEMOVE:

 {

 // if we're recording...

 ifififif (Recording_ &&

 (Msg.wParam & MK_RBUTTON))

 {

 // grab the cursor location

 TPoint PMouse(

 LOWORD(Msg.lParam),

 HIWORD(Msg.lParam)

);

 // translate to screen coords

 ClientToScreen(

 Msg.hwnd, &PMouse

);

 // store the coordinates

 mouse_coords_.push_back(PMouse);

 MsgHandled = truetruetruetrue;

 }

 breakbreakbreakbreak;

 }

Chandler, Mouse Gestures Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 38 C++Builder Developer’s Journal

 casecasecasecase WM_RBUTTONUP:

 {

 // release mouse capture

 ReleaseCapture();

 // if the recorded gesture is of

 // sufficient length...

 ifififif (Recording_ &&

 mouse_coords_.size() > 6)

 {

 Recording_ = falsefalsefalsefalse;

 // convert to angles

 TAngles Angles;

 PointsToAngles(

 mouse_coords_, Angles

);

 // attempt recognition

 DoRecognize(Angles);

 MsgHandled = truetruetruetrue;

 }

 // clean up

 mouse_coords_.clear();

 breakbreakbreakbreak;

 }

 }

}

This code: (1) stores the (x,y) coordinates of the re-

corded gestures in the private mouse_coords_ mem-

ber (a std::vector); then (2) converts the (x,y) coor-

dinates to a corresponding std::vector of polar angles

via the previously mentioned PointsToAngles()

function; and then (3) passes this std::vector of angles

on to the DoRecognize() method.

Recognizing and responding
The DoRecognize() method is responsible for recog-

nizing the user-input gesture; here’s the code:

voidvoidvoidvoid TMouseGestureManager::

 DoRecognize(TAngles constconstconstconst& Angles)

{

 // resize the user-input angles

 // to the common length

 TAngles ResAngles;

 ResizeAngles(Angles, ResAngles,

 Gestures_->GestureLength);

 // find the matching gesture (if any)

 TMouseGesture* constconstconstconst Gesture =

 Gestures_->FindGesture(ResAngles);

 // invoke the OnGesture event handler

 boolboolboolbool GesHandled = falsefalsefalsefalse;

 ifififif (OnGesture_ != NULL)

 {

 OnGesture_(thisthisthisthis, Gesture,

 ResAngles, GesHandled);

 }

 // if required, invoke the gesture's

 // associated action

 ifififif (!GesHandled && AutoExecute_ &&

 Gesture != NULL &&

 Gesture->Action != NULL)

 {

 Gesture->Action->Execute();

 }

}

Here, we simply punt to the TMouseGes-

tures::FindGesture() method to find the matching

gesture in the predefined collection. Note that this call

to FindGesture() will return NULL in the case of no

match.

Following the recognition attempt, the OnGesture

event is invoked, which provides an opportunity to

inform the end-user of the recognition results (e.g.,

you could display a sound or draw the gesture). It’s

especially important to inform the end-user of a un-

successful recognition attempt—you certainly don’t

want the end-user waiting for an action that’ll never

happen.

The OnGesture event also contains a Boolean ref-

erence-type parameter, GesHandled, which allows

you to selectively filter out certain gestures from

within the event handler. Specifically, if the

TMouseGestureManager::AutoExecute property is

true, and the gesture was recognized, the gesture’s

associated action is invoked via the TBasicAc-

tion::Execute() method. If you don’t want this ac-

tion to be invoked for a particular gesture, you can set

the GesHandled parameter to true from within a

handler for the OnGesture event. (And, if you don’t

want any gesture‘s action to be invoked, you can sim-

ply set AutoExecute to false.)

The Notification() method
Earlier, when describing the TMouseGesture::Set-

Action() method (see “The action and action link”), I

mentioned that the TMouseGestureManager compo-

nent is notified of the destruction of each gesture’s

corresponding TBasicAction. Recall that this setup is

required because the TMouseGesture class is not a

TComponent descendant and therefore cannot receive

notification of destruction of its action. TMouseGes-

tureManager, on the other hand, is a TComponent de-

Volume 9, Number 6—June 2005 (Special Issue) Chandler, Mouse Gestures

C++Builder Developer’s Journal 39 www.bcbjournal.com

scendant, and has therefore been delegated the task of

updating each gesture’s Action property:

void __fastcallvoid __fastcallvoid __fastcallvoid __fastcall TMouseGestureManager::

 Notification(TComponent* Component,

 TOperation Operation)

{

 // if an action is being destroyed

 ifififif (Operation == opRemove &&

 dynamic_castdynamic_castdynamic_castdynamic_cast<TBasicAction*>

 (Component) != NULL)

 {

 // scan the list of gestures to see

 // if one of their actions is the

 // deleted action (and then nullify

 // its Action property)

 inininintttt constconstconstconst num_gestures =

 Items->Count;

 forforforfor (intintintint idx = 0;

 idx < num_gestures; ++idx)

 {

 ifififif (Component ==

 Items->Gesture[idx]->Action)

 {

 Items->Gesture[idx]->

 Action = NULL;

 }

 }

 }

 // call the inherited version

 TComponent::

 Notification(Component, Operation);

}

Using and extending the code
This month’s code includes a sample application that

demonstrates how to use the TMouseGesture, TMo-

useGestures, and TMouseGestureManager classes.

Using the TMouseGestureManager class is extremely

simple: you just drop a TMouseGestureManager in-

stance on your form at design-time, and then add

your predefined TMouseGesture objects using the

standard Collection Editor.

Unfortunately, there’s a catch: you must manually

(i.e., via code) specify each predefined gesture’s list of

angles. For example, here’s the constructor of the form

used in the demo project, which defines the 10 prede-

fined gestures shown in Figure A:

__fastcall__fastcall__fastcall__fastcall TForm1::TForm1(

 TComponent* Owner) : TForm(Owner)

{

 forforforfor (intintintint idx = 0; idx < 10; ++idx)

 {

 // grab a pointer to the gesture

 TMouseGesture* Gesture =

 MouseGestureManager1->

 Items->Gesture[idx];

 // grab a reference to its angles

 TAngles& Angles = Gesture->Angles();

 // define straight-line gestures...

 ifififif (idx < 8)

 {

 floatfloatfloatfloat angle;

 switchswitchswitchswitch (idx)

 {

 // 0 degrees

 casecasecasecase 0: angle = 0.0f;

 break;

 // 45 degrees

 casecasecasecase 1: angle = M_PI/4.0f;

 breakbreakbreakbreak;

 // 90 degrees

 casecasecasecase 2: angle = M_PI/2.0f;

 breakbreakbreakbreak;

 // 135 degrees

 casecasecasecase 3: angle = 3.0f*M_PI/4.0f;

 breakbreakbreakbreak;

 // 180 degrees

 casecasecasecase 4: angle = M_PI;

 breakbreakbreakbreak;

 // -135 degrees (225 degrees)

 casecasecasecase 5: angle = -3.0f*M_PI/4.0f;

 breakbreakbreakbreak;

 // -90 degrees (270 degrees)

 casecasecasecase 6: angle = -M_PI/2.0f;

 breakbreakbreakbreak;

 // -45 degrees (315 degrees)

 casecasecasecase 7: angle = -M_PI/4.0f;

 brbrbrbreakeakeakeak;

 }

 forforforfor (intintintint pos = 0; pos < 2; ++pos)

 {

 Angles.push_back(angle);

 }

 }

 // define a counter-clockwise circle

 // gesture starting at 6 o'clock...

 elseelseelseelse ifififif (idx == 8)

 {

 forforforfor (float angle = 0;

 angle < M_PI; angle += M_PI/50.0f)

 {

 Angles.push_back(angle);

 }

 forforforfor (floatfloatfloatfloat angle = -M_PI;

 angle < 0; angle += M_PI/50.0f)

 {

 Angles.push_back(angle);

 }

 }

Chandler, Mouse Gestures Volume 9, Number 6—June 2005 (Special Issue)

ISSN 1093-2097 40 C++Builder Developer’s Journal

 // define a Z-shaped gesture...

 elseelseelseelse // (idx == 9)

 {

 Angles.push_back(0.0f);

 Angles.push_back(0.0f);

 Angles.push_back(-3.0f*M_PI/4.0f);

 Angles.push_back(-3.0f*M_PI/4.0f);

 Angles.push_back(-3.0f*M_PI/4.0f);

 Angles.push_back(0.0f);

 Angles.push_back(0.0f);

 }

 }

 // common length of 21

 MouseGestureManager1->

 Items->GestureLength = 21;

 // resize all gestures

 MouseGestureManager1->

 Items->NormalizeGestures();

}

Figure D shows a screenshot of the application upon

successful recognition of the “circle” gesture.

 For these relatively simply shapes, specifying the

angles via code isn’t too difficult; however, this proc-

ess can quickly become tedious for more complex

shapes. This is certainly an area which can use some

improvement. In fact, it wouldn’t be too difficult to

write a utility application in BCB which allows you to

graphically define the ges-

tures. A similar approach

might also be used to allow

the end-user to specify cus-

tom, user-tuned gestures.

Conclusions
In this article, I described

how to record, recognize,

and respond to mouse ges-

tures. In particular, I pre-

sented a basic approach to

gesture recognition which

operates based on polar

angles and quasi-winner-

take-all matching. I encour-

age you to also take at look

at [4], [5] and [6] for other,

more sophisticated ap-

proaches to recognition.

Contact Damon at editor@bcbjournal.com.

References
1. D. Chandler, “OLE Drag and Drop,” C++Builder

Dev. Journal, 6 (11), 2002.

2. http://en.wikipedia.org/wiki/Mouse_gesture

3. http://tinyurl.com/8x394

4. http://www.etla.net/libstroke

5. http://xstroke.org

6. http://tinyurl.com/bsost

7. http://tinyurl.com/cabad

8. Winner-take-all matching is often referred to as

vector quantization; see http://tinyurl.com/b8mtz

9. D. Chandler, “Using Actions and Action Lists,

Part I,” C++Builder Dev. Journal, 6 (9), 2002.

10. D. Chandler, “More Run-time Moving and Resiz-

ing, Part II,” C++Builder Dev. Journal, 9 (5), 2005.

11. Note that there are other ways to initiate a ges-

ture-recording session, e.g., by holding down the

Control key instead of the right mouse button;

this I leave as an exercise for the reader.

Figure Figure Figure Figure DDDD

Screenshot of this month’s demo application.

Volume 9, Number 6—June 2005 (Special Issue) This Month’s Developer’s Poll

C++Builder Developer’s Journal 41 www.bcbjournal.com

This Month’s Developer’s Poll
Each month, the Journal’s Developer’s Poll allows you to compare your opinions to those

of other members of the C++Builder Developer's Journal community. The results of this

month's poll will be published in next month's issue, and we will forward the results to the

C++ folks at Borland.

Last month’s poll question was:

How often do you refer to the VCL source

code while programming?

a. Very frequently.

b. Occasionally.

c. Very rarely or never.

The results are shown in the following chart:

(c) 36.2%

(b) 39.7%

(a) 24.1%

We thank the 58 readers who voted.

This month’s poll question is:

What feature of C++Builder do you find

most attractive for facilitating application

development?

a. The visual designer/VCL.

b. The overall IDE.

c. The compiler.

d. Other (please specify).

Cast your vote online at

http://polls.bcbjournal.com

Volume 9, Number 6—June 2005 (Special Issue) This Month’s Contributors

ISSN 1093-2097 42 C++Builder Developer’s Journal

 This Month's Contributors

Curtis Krauskopf

Curtis Krauskopf is a software engineer and the principle of The
Database Managers (www.decompile.com). He has been writing
code professionally for over 20 years. Curtis has a bachelor's degree
in Computer and Electrical Engineering from Purdue University. His
prior projects include multiple web e-commerce applications,
decompilers for the DataFlex language, aircraft simulators, an auto-
mated Y2K conversion program for over 3,000,000 compiled
DataFlex programs, and inventory control projects. Curtis has spo-
ken at many domestic and international DataFlex developer confer-
ences and has been published in FlexLines Online, JavaPro Maga-
zine and C/C++ Users Journal. Curtis can be contacted at
curtis@decompile.com.

Don Doerres

Don Doerres is a long-time embedded systems engineer with exper-
tise in both hardware and software. His day job is Chief Software
Engineer at Broad Reach Engineering, a small firm that develops
spacecraft. Don can be contacted at trundlar@cox.net.

Mark Finkle

Mark Finkle is a Senior Developer and Project Lead with Minitab
Inc., a commercial software company focusing on statistical software
and related products. He also maintains a blog with related informa-
tion at www.weborama.blogspot.com. Mark can be contacted at
mark.finkle@gmail.com.

Malcolm Smith

Contributing Editor Malcolm Smith is owner of MJ Freelancing,
which develops custom components and bespoke projects. Malcolm
is also a contributing author of the C++Builder 5 Developer's Guide
and he is Chief Analyst Programmer for Comvision Pty Ltd. design-
ing and implementing security management systems, concentrating
on the integration of disparate CCTV and alarm systems as well as
streaming digital video into security control rooms. Malcolm can be
contacted at msmith@bcbjournal.com.

Damon Chandler

Damon Chandler develops image processing and graphics-based
applications in the Visual Communications Lab at Cornell Univer-
sity, where his research focuses on image compression algorithms.
Damon is a co-author of the Windows 2000 Graphics API Black
Book, a contributing author of the C++Builder 5 Developer's Guide,
and a member of Team Borland (www.teamb.com). Damon can be
contacted at editor@bcbjournal.com.

C++Builder Developer’s Journal (ISSN 1093-2097) is pub-
lished online monthly by Encoded Communications
Group, 66 Lois Lane, Ithaca, NY 14850.

Customer Service: support@bcbjournal.com

Customer Relations (Voice) (607) 227-3757
Customer Relations (Fax) (707) 238-3031

Send all written correspondence to:

 EnCoded Communications Group
 66 Lois Lane
 Ithaca, NY 14850

Editorial: editor@bcbjournal.com

Editor-in-Chief Damon Chandler
Managing Editor Jared Bish
Contributing Editors Bob Swart
 Brent Knigge
 Malcolm Smith

Copyright © 2005, EnCoded Communications Group.
All Rights Reserved. Portions of this publication contain
image derived from works copyright 2005 David Vi-
gnoni.

C++Builder Developer’s Journal is an independently pro-
duced publication of EnCoded Communications Group.
All rights reserved. Reproduction in whole or in part in
any form or medium without express written permission
of EnCoded Communications Group is prohibited. En-
Coded Communications Group reserves the right, with
respect to submissions, to revise, republish, and author-
ize its readers to use the tips submitted for personal and
commercial use.

Every attempt has been made to ensure the accuracy of
the published articles and code. EnCoded Communica-
tions Group does not assume liability for the use of the
techniques or code published herein beyond the original
subscription price of the Journal.

Microsoft Windows is a registered trademark of Micro-
soft Corporation. C++Builder is a registered trademark
of Borland Software Corporation. All other product
names or services identified throughout this journal are
trademarks or registered trademarks of their respective
companies.

Price

Personal $49/year
Personal with email PDF delivery $52/year
Corporate/Library/Institutional $79/year

